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Abstract

Because of their high strength and stiffness together with their light weight, fiber

reinforced composite materials offer great potential for applications particularly in the

aerospace industry. The weight savings translate into increased performance and

decreased fuel costs. In addition, the use of these materials avoids the dependence on

foreign sources for the critical elements needed in the new exotic metallic alloys that

otherwise might be used. Early research has proven the usefulness of these materials,

but the need to quantitatively characterize important material properties and develop

applicable nondestructive evaluation techniques remains. Important physical properties

(i.e. mechanical, thermal, electrical} need to be measured. Moreover, relationships

between these physical properties and important engineering properties such as

strength, residual strength after impact and fatigue loading, and fiber-matrix interfacial

strength need to be examined to provide a basis for quantitative nondestructive evalua-

tion of these materials.

Toward this goal, linear and nonlinear elastic properties have been demonstrated

to be important physical properties in conventional materials. In particular, nonlinear

properties are important in the nondestructive determination of applied and residual

stress (strain} as well as measuring the interatomic bonding forces in crystalline solids.

Also, several investigations have established a possible relationship between nonlinear

elastic properties and ultimate strength in aluminum and carbon steel.

This work presents the theoretical treatment of linear and nonlinear elasticity in

a unidirectionally fiber reinforced composite as well as measurements for a unidirec-

tional graphite/epoxy composite (T300/5208). Linear elastic properties were measured

by both ultrasonic and strain gauge measurements. The nonlinear properties were

determined by measuring changes in ultrasonic "natural" phase velocity with a pulsed

phase locked loop interferometer as a function of stress and temperature. These meas-

urements provide the basis for further investigations into the relationship between
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nonlinear elastic properties and other important properties such as strength and fiber-

matrix interfacial strength in graphite/epoxy composites.
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I. INTRODUCTION

The theory of nonlinear elasticity and the measurement of nonlinear elastic pro-

perties of materials have been subjects of great interest for many years. Nonlinear elas-

ticity is important in many areas of physical measurements including the characteriza-

tion of interatomic bonding forces and anharmonic behavior of a crystal lattice, nondes-

tructive measurement of applied and residual stress (strain) using ultrasonic techniques,

and stress-strain relations in finite strain of materials. This will be discussed in more

detail later.

One of the first successful theoretical treatments of the subject of nonlinear elas-

ticity was presented by Murnaghan [1] in 1937. He extended the theory of infinitesimal

elasticity to the general case including strains of any magnitude. Birch [2], in 1938,

pointed out the importance of this theory for the case of seismic waves superimposed on

the large hydrostatic pressures within the earth. Since that time a number of research-

era have presented volumes of material on the subject of nonlinear elasticity. Although

a detailed review of this information is beyond the scope of this essay, important work

in several areas will be discussed. First, literature discussing the basic property of non-

linear elasticity and its effects on ultrasonic wave propagation will be reviewed. This

will be followed by a discussion of some of the literature involving the development of

theoretical and measurement techniques as well as some of the applications for non-

linearelasticresearch. Also, previous measurements of the nonlinear propertiesof poly-

mers and composites willbe discussed.

The study of the mechanical propertiesof materials isconcerned with the defor-

mation of a material upon applicationof an external force as well as itsbehavior upon

removal of that force. There are three types of mechanical behavior exhibited by

materials under loading. These are elastic,anelastic and plastic. In elasticdeforma-

tion,the material deforms instantaneously upon application of load and returns to its
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originalshapeinstantaneously upon removal of load. This behavior can be eitherlinear

or nonlinear. This isdemonstrated in Figs. 1.1 (a) and 1.1 (b) for the simple case of

uniaxial loading where the elongation serves as a measure of the deformation of the

material. In anelasticdeformation, the material deforms over time upon the application

of load and returns to its originalshape over time upon the removal of load. This is

demonstrated in Fig. 1.2. When a material undergoes plasticdeformation, it deforms

instantaneously upon application of load but does not return to itsoriginalshape upon

the removal of the load. Fig. 1.3 shows the load-elongation characteristicsof plastic

deformation.

However, the behavior of real materials can be a combination of these three

types of mechanical behavior and isgenerallydependent on the amount of load applied.

The material may be elasticfor small loads but the deformation may be anelasticor

plastic at higher loads. Also changes in other parameters such as temperature may

affectthe response of the material upon loading. The present work isinterestedin the

case of nonlinear elasticbehavior where the deformation isrecoverable but not linearly

related to the applied load.

An understanding of linearand nonlinear elasticitycan be gained by considering

theories of interatomic bonding in molecules such as the Born [3] and Madelung [4]

theories for ionic crystals.In these theories,the total energy of bonding is the energy

due to the sum of the attractive and repulsiveforcesbetween the atoms multipliedby

the distance over which they act. The generalshape of such a curve isshown in Fig. 1.4

with the potential energy (E) versus the separation distance (r) plotted. The equili-

•brium separation distance is r0 where the potential energy is at a minimum E 0 . To

move the atoms closertogether or further apart raisesthe energy of the system and

thus requiresthe applicationof an external force. This force can be determined by tak-

ing the derivativeof E with respect toseparation distance for the curve in Fig. 1.4. The

resultingforce versus separation distance curve isthen a simple analogy on the atomic
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scaleto the load-displacement curves discussedearlier.

For small displacements about r0 ,the potential energy curve appears to be and

can be approximated as a quadratic function. Therefore itsderivativeisa linearcurve.

That is,the relationshipbetween force and separation distance (load and elongation)is

linearfor small displacements about equilibrium. However, as the amplitude of the dis-

placement becomes larger, the potential energy curve is no longer quadratic. This

implies that the force-separationcurve isno longer linearwhich gives riseto nonlinear

elasticity.

Another interestingpoint about Fig. 1.4 isthe asymmetry of the potentialenergy

curve about r0 . This provides a simple explanation for the understanding of thermal

expansion in materials. Since the curve isasymmetric, as the material is heated and

the atomic latticevibrations increase, the mean separation distance between atoms

changes. For the curve in Fig. 1.4,the mean separation distance increaseswith increas-

ing amplitude vibrations about r0 • Thus, in agreement with empirical observations in

most materials,expansion occurs as the material isheated.

Because of the small strains(on the order of 10-s )imposed on the sample during

ultrasonic wave propagation, nonlinear elasticbehavior is generally neglected in the

theoriesof the propagation of ultrasonicwaves. However, as pointed out by Green [5],

there are three cases where nonlinear elasticitymay become important in elasticwave

propagation. First,the amplitude of the wave may become large enough to cause finite

strainsin the material. In the second case,nonlinear behavior may occur when a small

amplitude wave issuperimposed on a large external staticstress.Also, nonlinear effects

may be caused by defectsin the material which cause localizedregionsof finitestrain.

The effectsof nonlinear elasticityon ultrasonic wave propagation were also

pointed out by Green 15]. These include the distortionof finiteamplitude sinusoidal

longitudinal waves. As they propagate, energy from the fundamental frequency is

transferred into the harmonics that are generated. The effect has been used by
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numerousinvestigatorsto measure the nonlinear propertiesof solids.Measurements on

aluminum singlecrystalsas well as NaCI, KCI, LiF and a magnesium aluminum alloy

were presented by Gedro_s and Krasil'Nikov [6]in 1963. Breazeale and Thompson 17]

reported measurements of harmonic distortionin polycrystallinealuminum also in 1963

which was followed by numerous other investigations.

Another effectof nonlinear elasticityon ultrasonicwave propagation isthat a

pure mode nonlinear longitudinalwave may propagate alone,but a nonlinear transverse

wave must have a longitudinalcomponent. Also, nonlinear transversewaves do not dis-

tort when propagating in a defectfreesolid.

Nonlinear elasticwaves can interact with each other in a solidto produce other

waves. This interactioncan also take place with thermal phonons to cause energy loss

from the elasticwave. The amount of interactiondepends on the amplitude of the elas-

tic waves. Interactionsof two nonlinear ultrasonicwaves to produce a third ultrasonic

wave were demonstrated by Rollins [8]in 1963 in fused silica,polycrystallinealuminum

and polycrystalline magnesium. Rollins, Taylor and Todd [9] demonstrated this

phenomenon again in 1964 and reported the measurements to be correct to within an

order of magnitude with predictionsbased on the measured third order elasticconstants

of polycrystallinemagnesium. Since this time, further examinations of nonlinear wave

interactionshave followed.

Another effectof nonlinearityin elasticwave propagation isthat the velocityof

a small amplitude ultrasonicwave superimposed on a large staticstressisdependent on

the amount of static stressapplied. It is this effectwhich provides the basis for the

measurement technique used in this research and will thus be discussed in more detail.

The effectcan be accounted for by two simple theoreticalexplanations. In the first,the

equation for the velocityof an elasticwave propagating along a long thin rod isrecalled

to be

1

,11,
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where v isthe ultrasonicphase velocity,

E is¥oung's modulus

and p isthe density.

This is based on the assumption that the material is homogeneous, isotropic and

behaves in a linearelasticfashion. These assumptions imply that the constitutiveequa-

tion of the material has the form

_r= Ee (1.2)

where a isthe stress

and e isthe strain.

Ifa nonlinear constitutiveequation isused such as

cr = EI_ + E2 e2, (1.3)

itfollowsthat the velocitywillnow depend on strainand thereforestress.

An alternativeapproach to understanding this isbased on the potential energy

theory for interatomic bonding discussed earlier.Since the velocityof ultrasonicwaves,

together with the densityof the medium give a measure of the modulus (second deriva-

tive of the potential energy), this modulus can be evaluated as a function of strain(or

stress)by measuring the velocityas a function of strain(or stress).Also, since for large

displacements (i.e.finitestrain),the potentialenergy function isnot a simple quadratic,

the modulus and thus the velocitywould be expected to change with applied stress.As

willbe seen later,the relationshipbetween velocityand stressshould be linearifterms

up to third order in strainare included in the elastictheory.

The theoretical development of the equations relating ultrasonic velocity to

stressbegan with the originalwork on finitedeformation of materials by Murnaghan [I].

This work provided the basisfor the theory presented by Hughes and Kelly [10]in 1953

in which they derived wave speeds as a function of stressin homogeneous, isotropic
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materials. They considered both uniaxial and hydrostatic compression for different corn-

binations of longitudinal and transverse (shear) mode waves. The following seven equa-

tions were presented:

P
poVx_o = X + 2_

3Ko
(61 + 4m + 7), + 10#) (1.3)

3_____( 1poVy2o=/_ - 3m - -_-n+ 33 +̀ 6/_) (1.4)

PoVx2x = 3, + 2/_ P (21 + X + X+-----_-E(4m + 43` + 10#)) (1.5)
3Ko #

P Xn

P°Vy2x = #- -3"-'_ (m + W + 43` + 4. /
(1.8)

3__ 23`p0vx_= 3`+ 2u- (21- --;-(m + × + 2.)) (I .7)

PoVy2y -- /_ P (m + 3`n
3Ko _ + 3` + 2#) (1.8)

POVy2 = /_ P (m -- (X+---_)n -- 2X) (1.9)
3I<o 2tt

where X,/_ are the second order linear elastic moduli of Lame' for a homogeneous,

isotropic material,

l,m,n are the third order elastic moduli for a homogeneous, isotropic

material as defined by Murnaghan,

P0 is the density of the unstressed material,

K 0 is the bulk modulus,

P is the uniaxial or hydrostatic compression,

and v is the velocity of an ultrasonic wave propagating along the x axis. The

first subscript on v refers to the direction of polarization, while the

second gives the direction of loading. 0 for the second subscript implies

hydrostatic loading.
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They made measurements of the nonlinear constants of polystyrene, Armco Iron and

Pyrex. Toupin and Bernstein [11] followed this work with an extension of the theory to

include a material of arbitrary crystal symmetry. This work was published in 1961.

The next major theoretical developments were presented in a series of papers by

Brugger [12,13] and Thurston and Brugger [14] in 1964 and 1965. These papers provided

the formulation and notation for most of the research presented in following years on

the topic. In the first paper by Brugger [12], a formal thermodynamic definition of the

higher order elastic constants of a solid was given. The relationships between his

definitionand those used by Murnaghan [I]and other authors were also presented. In

the paper of Thurston and Brugger [14],the concept of an ultrasonic"natural" velocity

was introduced. The "natural" velocity was defined as the initial(unstressed)path

length divided by the time of flightof the elasticwave. The concept of "natural" velo-

city is of great importance in the measurement of nonlinear properties because it

requires that the change in only one parameter, the time of flight,be monitored as a

function of stressin the experiments. In determining normal ultrasonicphase velocity

changes, the time of flightas well as the propagation distance must be measured mak-

ing the experimental measurements more difficultand uncertain. Also presented in this

paper were general equations for the relationship between the "natural" velocity

changes and applied stressfor differentcrystalsymmetries, wave modes, and stresscon-

ditions.In the finalpaper by Brugger [13],explicitequations were presented for these

relationsfor a number of crystalSymmetries, wave modes and stressconditions. These

equations allow the calculationof allof the third order elasticcoefficientsfor allof the

crystalpoint groups.

Thus, based on the theory of Thurston and Brugger [14],measurements need only

be made of the change in "natural" velocity(i.e.changes in time of flight)of ultrasonic

waves as a function of stressto determine the third order elasticcoefficients.However,

the changes involved are generally quite small and require very accurate ultrasonic
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techniques.Severalsuchtechniqueshavebeendevelopedover the yearswhichmake

thesemeasurements possible. Early measurements by Hughes et al. [15]in 1950 used a

simple pulse transmission technique. A voltage spike was used to excitea piezoelectric

ultrasonictransducer which launched an ultrasonicwave into the sample. A receiving

transducer on the opposite sideof the sample converted the elasticwave into an electri-

cal signal which was displayed on an oscilloscope.The time of flightwas measured

directlyon the scope with an uncertainty reported to be +/- 0.03/_s. This led to frac-

tionaluncertaintiesof largerthan one part in 103 for samples with a 20/_s traveltime.

Improvements in the abilityto measure more accurately the ultrasonic wave

time of flightfollowed rapidly. In 1953, McSkimin [16,17]reported on a phase com-

parison ultrasonictechnique. This technique was a pulse-echo technique which used the

same transducer as a generator and receiverof the elasticwaves. A tone-burst (burstof

several cyclesof high frequency sinusoidalwaves) was used to excitethe transducer and

thus generate the ultrasonicpulse. The elasticpulse traveled through the sample and

reflectedoffof the other side. This occurred a number of times producing an oscillo-

scope pattern of a number of decaying amplitude pulses which were allsimilarexcept

for the exponential decrease in their amplitude. In McSkimin's technique he amplified

and rectifiedthe received echos and displayed them on the oscilloscope.The time of

flightwas determined by varying the frequency of the tone-burst to find frequencies

where the received echos were all in phase. For this condition the time of flightwas

given by

n _ --2-
360

t - (1.10)
fn

where t was the time of flight,

n was an integer,

f was the frequency of the tone-burst
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and "Iwas a phase angle,in degrees,correctingfor phase shiftsat the

specimen-transducer interface.

The integer n was determined by measuring two sequentialvalues of the frequency for

the "in phase" condition. In thiscase,n was given by

fl

n- Af (1.11)

where fland f2were the two measured values of frequency

and Af was the differencebetween the two measured values.

An expressionfor the phase angle "rbased on standard equivalent electricaltransmission

line theory was presented. ItWas calculated from known material properties(mechani-

cal impedances of specimen and transducer and resonant frequency of transducer).The

overalluncertainty in measuring velocitywas reported to be 0.14 %.

In 1957 Williams and Lamb [18]reported a technique using a pair of ultrasonic

bursts and a through transmission technique. The firstburst was launched through the

sample and reflected multiple times through the specimen. The second burst was

launched through the same transducer a short time laterso that the firstarrivalof the

second pulse at the receivingtransducer would coincidewith the arrivalof the firstecho

of the firstpulse. The excitationfrequency was then adjusted so that there was cancel-

lation between the two signals. Analysis was then presented which allowed calculation

of the travel time in the specimen from the frequency which included correctionsfor

phase shifts at the specimen-transducer interface. Analysis of the phase angle also

included the effectof the coupling medium between the transducer and specimen. The

measured velocitywas considered to be accurate to one part in 104 .

Other techniques developed later such as the pulse superposition method

(McSkimin [19])in 1981 and the pulse echo overlap technique (May [20]and Papadakis

[21])increased absolute accuracy of velocity measurements under certain conditions to

severalparts per millionaccording to Papadakis [22].He also reported that changes in
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time of flightcould be measured accurate to parts in I0z using these techniques. Details

of the pulse echo overlap technique willbe discussedlater.

The final technique discussed was reported by Heyman [23,24]in 1980. It

allowed changes in "natural" velocityaccurate to one part in 107 to be measured. The

technique uses an ultrasonicinstrument known as a pulsed phase locked loop (P2L2)

which measures changes in resonant frequency of the specimen, transducer,bond compo-

siteresonator system as a function of some other parameter such as stressor tempera-

ture. This can be shown to be equivalent to measuring changes in "natural" velocity

(W) as follows.Since

Lo
W - (1.12)

t

then

where Lo isthe initiallength of propagation which isa constant

and t isthe time of flight,

(tAI, 0 -- LoAt )
AW --_ (1.13)

t2

which reduces to

LoAt
t_ (1.14)

since

L_Lo -_ O. (i.15)

Therefore,

AW At
w

w t
(l.lS)

The normal phase velocity(v) isgiven by
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L
v - (1.17)

t

where L is the length of propagation which is not a constant.

Therefore,

AW At Av AL

W t v L
(1.18)

However the resonant frequency of the testsystem isgiven by

nv

Fn- 2L (1.19)

where n isan integerdenoting the number of the harmonic.

Therefore,

AF Av AL
D

F v L'
(1.20)

and thus,

AF AW At
I m

F W t (1.21)

The way in which the P2L2 measures changes in resonant frequency will be discussed in

a latersectionas itisthe instrument used for the nonlinear measurements in thiswork.

Although most of the work discussed thus far deals with the development of

theory and measurement techniques for nonlinear behavior of materials,much work in

the literaturepoints out the importance of nonlinear measurements and their applica-

tions.One of the firstapplicationsof nonlinear elasticitywas in the area of materials

characterization. Nonlinear elasticconstants, through their representation in terms of

interatomic potentialsin crystallinesolids,provide much information about the nature

of the bonding of atoms in a crystal. Einspruch and Manning [25]pointed out the

importance of nonlinear and anharmonic phenomena in solid materials in relation to
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other important material properties such as thermal coefficients of expansion, Griineisen

constants and ultrasonic attenuation. They also pointed out the need for a nonlinear

description of elasticity in theories dealing with regions of high stress or finite strain in

solids such as around dislocations.

One of the most useful and important applications of nonlinear elasticity, how-

ever, has been in the field of nondestructive evaluation of applied and residual stress

(strain) in materials. This application is based on the fact that ultrasonic wave speeds

are a function of the stress state of a material due to nonlinear effects. Thus, if the

relationship between stress and velocity is previously measured for a given material,

theoretically, the state of stress in the material can be monitored by measuring the

ultrasonic velocity. A variation of this is called the acoustoelastic effect or acoustical

birefringence. The acoustoelastic effect arises from the fact that two shear waves, one

polarized parallel to stress and the other perpendicular to stress, have a difference in

velocity proportional to the applied stress. Again this is due to nonlinear effects.

Acoustical birefringence is similar to optical birefringence or the photoelastic effect

which has been used to determine strain in transparent materials for many years. As

early as 1959 the acoustoelastic effect was being touted for the measurement of residual

stress. Benson and Raelson [26] stated that acoustoelasticity could be as effective as

photoelastic methods with the additional benefit of applications to opaque materials.

However, in the years since, problems have plagued the application of acoustical

birefringence for the measurement of residual stress. The effect of velocity difference

between the shear waves due to material anisotropy is often much larger than changes

observed due to stress making residual stress measurements difficult. Another problem

involves energy flux deviation. In an anisotropic body, the energy flux vector (the direc-

tion of the flow of energy per unit time per unit area) of an elastic wave does not in

general coincide with the wave normal. This refraction of the wave is different for the

two shear waves which means the two waves do not follow the same path through the
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material. It also depends on the degree of anisotropy and may also change as a func-

tion of stress. These factors make velocity measurements for acoustoelastic determina-

tion of stress extremely dimcult. Also, as pointed out by Hsu [27], although there are

analogies between the photoelastic effect and the acoustoelastic effect, a comparison of

the important parameters (i.e. wavelengths, frequencies, velocity changes, etc.) for both

acoustical and optical wave propagation shows that the acoustic technique is not as

efficient as the optical technique.

Nevertheless, numerous investigators are still attempting to overcome these prob-

lems. Theory has been developed to attempt to account for the effect of special textures

which has met with limited 'success in applications. Also, as noted earlier, measurement

technology in ultrasonics has progressed substantially. The progress in acoustoelasticity

was reviewed in detail by Pao et al. [28]. The general problem of the experimental

determination of residual stress using ultrasonic methods has yet to be solved. However,

the detection of applied stress has been successfully reported by numerous authors

[24,29,30].

Nonlinear elastic material properties may also be important in the nondestruc-

tive evaluation of important engineering properties of materials. For engineering appli-

cations, it is important to determine material properties such as strength and residual

strength after impact or fatigue loading"and thermal cycling. However, most nondes-

tructive measurements yield only physical properties such as modulus, density or

coefficientof thermal expansion. To determine the important engineering properties

relationshipsmust be developed between the measured physical quantities and the

desired engineering properties. Nonlinear properties may be useful in this respect as

they are parameters which are significantin large deformations (i.e.near failurestrains)

of materials. To examine this,Heyman et al. [31]studied the relationshipbetween the

Stress Acoustic Constant (SAC) which isa measure of a mixture of second and third

order elasticmoduli and carbon content in carbon steels.They found the SAC not only
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seemed to be related to the carbon content but to the strength of the material as well.

In aluminum, Heyman and Chern [32] examined the relationship between the SAC and

heat treatment. They found that while the second order moduli were insensitive to the

different heat treatments used, the SAC was able to differentiate them. Thus, a simple

test method for detecting improperly heat treated and thus inferior strength aluminum

was demonstrated based on measurements of nonlinear elastic properties.

Although previous discussion has considered primarily only metallic and non-

metallic crystalline solids, numerous studies have presented measurements of nonlinear

phenomena in polymeric and composite materials. In 1950, Hughes et al. [15] reported

changes in wave speed as a function of pressure and temperature for polyethylene,

polystyrene and Lucite. In 1953, Hughes and Kelly [10] presented the three third order

elastic constants for polystyrene. In 1959, Singh and Nolle [33] measured the velocity as

a function of hydrostatic pressure and temperature for polyisobutylene. Assay et al.

[34,35] presented the change in velocity for polymethylmethacrylate as a function of

stress and temperature. The relationship between stress and velocity became nonlinear

at high pressures indicating higher order nonlinear effects. Lamberson [36], in 1969,

reported on the temperature and hydrostatic pressure dependence of velocity in polys-

tyrene and two composite materials. One of the composites was carbon phenolic while

the other was a tape wound silica phenolic. He also reported nonlinear stress-velocity

curves for these materials at high pressures. Zarembo and Shklovskaya [37] reported

harmonic generation data for polystyrene, plexiglass and rubber in 1971. They also

examined the effect of hydrostatic and uniaxial stress on harmonic generation in these

materials. Other authors [38,39] have reported nonlinear measurements on different

polymeric materials since this time.

The present work deals with the measurement of the linear and nonlinear elastic

properties of a graphite/epoxy composite material. More specifically, measurements

were made on unidirectional laminates of T300/5208 (Thornel 300 graphit e fibers in a
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Narmco5208 epoxy resin). The choice of a unidirectional lay up was made because it

offers the highest elastic symmetry and therefore is the least complex orientation to

analyze. The elastic symmetry of unidirectional fiber reinforced composites is usually

taken to be that of transverse isotropy if the fibers are randomly distributed in the

plane perpendicular to the fiber axis. A transversely isotropic material is one which has

a preferred axis, perpendicular to which is a plane in which the material behaves in an

elastically isotropic fashion. In the case of a unidirectional composite, the fiber axis is

the preferred axis having a much larger elastic stiffness, and the isotropic plane is the

plane perpendicular to the fiber axis with a much lower stiffness.

For a transversely isotropic material there are five linear elastic (second order)

moduli. This is the same as for the case of a hexagonal single crystal. However, there

are only nine nonlinear (third order) moduli for transverse isotropy as opposed to either

ten or twelve for the different point group symmetries of hexagonal single crystals. In

the present work, the five linear (second order) elastic stiffness moduli for the unidirec-

tional composites were computed from ultrasonic velocity measurements. These values

were then compared with available data from the literature as well as checked for con-

sistency with the assumption of transverse isotropy. From the linear elastic stiffness

moduli, the compliance moduli were calculated and compared with those obtained by

strain gauge measurements. These were also compared with reported values for a simi-

lar material. Measurements were then made to determine the change in "natural" wave

velocity as a function of applied stress and temperature. A variety of combinations of

propagation direction and loading configurations were used with longitudinal and

transverse waves. This data was also checked for consistency with the predictions of

transverse isotropy. Then the velocity-stress data was used to calculate some of the

nonlinear coefficients of this material.
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II. LINEAR ELASTICITY

II.A. Introduction

In order to determine the nonlinear elastic moduli, the linear elastic stiffness and

compliance moduli must first be measured. In this chapter, measurements of these pro-

perties in a unidirectional graphite/epoxy composite will be discussed. Definitions of the

terms used in linear elastic theory will be presented first, followed by a theoretical

explanation of the methods used. Then, the measurements will be reported and com-

pared with theoretically predicted and previously measured values for this material.

II.B. Theory

As discussed earlier, the theoretical basis for linear elasticity shows that it is

only applicable for small or infinitesimal deformations. This permits the use of simplify-

ing assumptions in the definition of strain for linear elasticity. The coordinates of a

point of material in an undeformed body are defined to be a i with respect to the origin

in an orthogonal coordinate system (Note: Einstein convention of summation over

repeated indices is assumed throughout this paper). The same point of material defined

by a i will be displaced to a new position x i in the material after deformation. The dis-

placement is a vector defined by

"i_ _" --_ (2.1)

having components ui. The strain can now be defined in two ways. The Lagrangian

strain tensor which provides a measure of the deformation with respect to the unde-

formed material coordinates is defined by

l[OUi O_j OnUk0Uk }
(22)
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In the Eulerian formulation of strain, the strain is described in reference to the

deformed state and is given by

1 { Oui Ouj OUkOU k }
(2.3)

The Lagrangian formulation is often referred to as a material description of strain while

the Eulerian is called the spatial description. The Lagrangian is more often used in

solid mechanics and the Eulerian in fluid mechanics. The assumption of infinitesimal

deformation can now be applied. This assumption means that since

_u i O_llj

Oa---_ and _ <<1 (2.4)

foo ou /
for infinitesimal deformations, then the quadratic term [_j is much smaller

than the linear terms and can be dropped from the expression. Thus the small or

infinitesimal strain tensor is defined by

= + (2.5)

The small strain assumption also means that

1 {Ou__a_" ___j] 1 [Ou._ Ou._ ]eli---- _- -[" cOai --'-- _- +
(2.6)

or that there is no difference between the Lagrangian and Eulerian formulations for

strain. It can also be seen from the definition of the small strain tensor that it is a sym-

metric tensor (i.e. eij --- Eji ).

The physical description of the components QI, e_, and _a3 is that they are the

normal strains which provide the measure of the normalized change in length of the

body along the respective coordinate axis. For example, if l0 is the unstrained length

along axis x I and 11 is the strained length along xl , then
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(11 -- lo)

_11 -- 1o (2.7)

The remaining strain components are the shear strains which are a measure of the

change in angle between two originally orthogonal axes in the undeformed medium.

This is demonstrated in Fig. 2.1 where the strain is given by

AXl
_12 -- -- tan(0) ,_ O (for small strain). (2.8)

X2

The stress tensor (o'ij) provides a measure of the applied forces on the body. It is

defined by

_ii-----
force on the Vth face in the j_th direction

cross sectional area of the ilth face
(2.9)

A diagram of the nine components of the stress tensor is shown in Fig. 2.2. The

engineering or nominal Stress is used where the cross sectional area is that measured in

the unstressed state. The true stress uses the instantaneous cross sectional area which

is much more difficult to measure. The components a m a_ and ass are the normal

stress components while the remainder are shear stress components. Laws of statics can

be used to show that if a body is to be in rotational equilibrium, the stress tensor must

also be symmetric.

Having defined both stress and strain, the relationship between the two can now

be discussed. For linear elasticity, the generalized Hooke's law is used. This expresses

the relationship between stress and strain as

(:rij ---- Cijklgkl (2.10)

where ctikl is the fourth rank lineai- elastic stiffness tensor. In the most general form this

tensor has eighty-one components. However, because the stress and strain tensors are

both symmetric, the following relations are valid
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Figure 2.1 - Two dimensional representation of shear strain,

solid line represents undeformed medium while

dashed line is deformed medium.
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Figure 2.2 - Diagram of the nine stress tensor components.
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Cijkl ffi Cjikl (2.11)

and

Cijkl = eijlk. (2.12)

This reduces the number of independent components to thirty-six. The assumed

existence of a strain energy density function (_b) which for the case of linear elasticity

has the form

1

4) ---- "_'Cijkleijekl (2.13)

provides further reduction of the number of independent elastic coefficients. It must be

true that

1 1

4) ---- _'Cijkleijekl ---- "_'eijklekleij. (2.14)

Equating this expressionterm by term with respect to strainyieldsthe relation

Cijkl-----Cklij. (2.15)

This reduces the number of independent coefficients to twenty-one. At this point, the

Voigt notation can be used to simplify things somewhat. For each pair of indices on

stress, strain and elastic moduli, the following substitutions are made

11 -'* 1 23 "-* 4

22 --*2 31 -'*5

33 --*3 12 --*6

(2.1s)

Using thisnotation, the generalizedHooke's law can be rewritten as

O"A = CAB£ B (2.17)

where capital subscripts are summed from one to six. The elastic stiffness moduli can
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now be written in matrix form for the most general anisotropic solid as

CAB

"Cll C12 C13 C14 C15 C16

C12 C22 C23 C24 C25 C26

C13 C23 C33 C34 C35 C36

C14 C24 C34 C44 C45 C46

C15 C25 C35 C45 C55 C56

C16 C26 C36 C46 C56 C66

(2.18)

The reduction in the number of independent elastic constants can be carried

further if material symmetries are taken into consideration. This is accomplished by

examining the effect on the strain energy density function of a rotation of the material

which places the material in an elastically equivalent condition due to symmetries of the

material. Due to the scalar nature of the strain energy density function, it should have

the same value in both configurations. An example of this procedure is now given. The

strain energy density function is written out in terms of the twenty-one independent

coefficients as

1¢ = + + + + +
z-

-'at-C13_1£3 "-_-C14_1_4 -I-C15£1£5 "-1"-C16£1_6 _ C23£2_3 "1-C24£2_4 -'1'-C25£2£5

__.C26£2% _.C34_3_ 4 .._..C35£3£ 5 -.{-C36£3£ 6 -.{-C45£4E5 -lt-C46_4£6 -.it-C56_5£6 (2.19)

In an isotropic material any rotation is elastically equivalent. Assuming an isotropic

material, a rotation of 180 degrees around the x 3 axis is chosen and is shown in Fig. 2.3.

The transformation matrix or direction cosine matrix [ai]] is found by taking the cosine

of the angle between the rotated and original axes. For this rotation it is given by

[aij ] ---- --1 . (2.20)

0
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Figure 2.3 - Diagram of the rotation of axes 180 degrees around

the x3 axis (primed axes are the rotated axes).
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The effect of this rotation on the strain tensor is given by

Thus

I

£11 = Ell

£22 _--- £22

£33 _ £33

E23 __ m £23

E3 i _ m £31

El2 _-_ El2

or

I

Eij _ aikajlEkl .

/

E1 = E 1

/

E2 _ E2

/

E3 _ E3

I

E4 = m E4

I

E5 : _ E5

E6 : E6

(2.22)

(2.21)

The rotated strain energy density function can be written after substituting equation

(2.22)as

z, E2 c22E_+ c33E_+ c,,E2+ c55E_+ e_E_)+ c,2EIE2¢' = _Cll _ +

@ Cl3E1E3 _ Cl4E1E4 _ Cl5E1E5 -_" Cl6E1E6 +C23E2E3 m C24E2E4 _ C25E2E5

"_- C26E2E6 _ C34E3E4 -- C35E3E5 + C36E3E6 + C45E4E5 -- C46E4E6 _C56EsE6) • (2.23)

Evaluating term by term the relation

¢' = ¢ (2.24)

yields

C14 --_ _ C14

C15 = _ C15

C24 = _ C24

C25 _-_ _ C25

C34 = _ C34

C35 _ m C35

C46 = _ C46

C56 = _ C56

all other Cij = Cij.

(2.25)

If equations (2.25) are to be true, then
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C14 _ C15 _ C24 _ C25 _ C34 _ C35 --" C46 _ C56 _ 0. (2.26)

Application of furthersymmetry operations willshow that for an isotropicmaterial, the

number of independent elasticcoefficientsreduces to two. The matrix then appears as

9

C11 C12 C12 0 0 0

C12 Cli C12 0 0 0

C13 C12 Cii 0 0 0

Cll -- C12
0 0 0 0 0

2

Cll -- c12
0 0 0 0

2

0 0 0 0 0

0

Cll -- c12

(2.27)

For a transverselyisotropicmaterial,the number of independent coefficientsisfivewhile

for an orthotropic material itisnine. The derivationof the independent coefficientsas

well as theirfinalmatrix forms for these two elasticsymmetries which are important for

unidirectional fiber reinforced composites is shown in Appendix A.

The relationshipbetween strainand stressisgiven by

_ij_-"SijkI_rkl• (2.28)

The moduli Sijklform the linearelasticcompliance tensor. The conditions of symmetry

for the stiffnesstensor also apply to the compliance tensor. The relationsbetween the

compliance and stiffnessmoduli for a given symmetry can be determined by inverting

the stiffnessmatrix.

The value of the elasticmoduli are also dependent upon the conditions (isother-

mal or adiabatic) in which they are measured. Isothermal moduli are measured at con-

stant temperature (T) while adiabatic moduli are measured at constant entropy (S).

The work by Brugger [12]provides a precisethermodynamic definitionof the elastic
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moduli and the relationshipbetween adiabatic and isothermal coefficients.In terms of

the free energy (F), the isothermal stiffness moduli are defined by

_F 'l (2.29)

where Po isthe unstrained density.

The adiabatic stiffnessmoduli are

eijkl = Po 'O_ijOr}k I
(2.30)

where U is the internal energy.

The adiabatic and isothermal compliances are defined in terms of the enthalpy (H) and

the Gibbs function (G) respectively and the thermodynamic tensions (t_) which are

tij = P0 = P0 • (2.31)

The compliance moduli are

sSijkl ------ P0 '
kl

(2.32)

and

siTkl =. -- P0 (2.33)

The relationship between adiabatic and isothermal compliance moduli was given in

matrix form by Hankey and Schule [40] as

(2.34)

where Cp isthe specificheat at constant pressure,

and aA isthe linearcoefficientof thermal expansion definedby
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aA-- 0T" (2.35)

The difference between adiabatic and isothermal moduli is usually quite small and often

less than experimental uncertainty.

The determination of the adiabatic linear elastic stiffness moduli can be made

by measuring the density and the ultrasonic wave velocity. The derivation of the equa-

tions of motion for the propagation of linear elastic waves in an anisotropic medium

provides the theoretical basis for this technique. This subject has been treated by a

number of authors among the earliest being Love [41] and it is reviewed in detail by

Green [5]. In deriving the wave equations, a number of initial assumptions about the

propagation medium are made. It is assumed to be unbounded, homogeneous and con-

tinuous. Next, an infinitesimal volume element of the medium is examined and the net

unbalanced forces acting on it are determined. This is accomplished by finding the

resultant of the variation of stress across the element for each direction and multiplying

this by the respective cross sectional area. Fig. 2.4 shows the variation of stress along

the xt direction for the infinitesimal volume element with sides of length 6xl, 6x 2 and 6x a.

If there were no variation of stress and thus no net unbalanced forces, there would be

no wave motion. The net unbalanced force along x I is given by

C_O'll C_t721

C_a31
+ [( 31 + (2.38)

¢Jx 3

This can be reduced to

[00"11 00"21 00"31 _OXI "_" O_X-_ "_- "_3 I_X2_X3"
(2.37)

Similar expression can be written for the net unbalanced force along x2 and x3 . Accord-

ing to Newton's second law these unbalanced forces must equal mii i where m is the mass
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Figure 2,4 - Illustration of the variation of stress on a volume

element of material along the x I direction.
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of the element and Ui are the second time derivatives of the displacements which are the

acceleration components. Actually, to be more exact, it is pointed out that Newton's

second law states that the force is equal to the time derivative of the momentum Pi •

However,

Pi =mui (2.38)

and therefore

lbi = miii + mfi.i. (2.30)

Since the mass of the element is assumed to be constant in time the forces are simply

given by mu i . Therefore the balance of forces can be written in component form as

f
mu i ----["_-'-'[OC_lOcX20<x3 . (2.40)

toxiJ

It is noted that the body forces are neglected in this equation. The mass can be rewrit-

ten in terms of the density P0 and the volume (V) which is given by

V ffi _XIOCX2OcX3 (2.41)

as

m = PoOcxloCx2oCx3 . (2.42)

Substituting (2.42) into (2.40) and canceling appropriate terms yields

PoUi = toqxj J"
(2.43)

To rewrite this in terms of only density and displacement, the stress is first rewritten in

terms of the strain using Hooke's law (2.10). Then the strain definition (2.6) is used to

produce the expression for stress in terms of displacement as
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ffij -- Cijkl + . (2.44)

The symmetry of the elastic coefficients (2.12) is applied to further simplify (2.44) to

1 { k/1c}
yield

(2.45)

and therefore

O'ij ---- Cijkl (2.46)

This is now put back into equation (2.43) to yield the final form of the equation of

motion for linear elastic wave propagation in an anisotropie medium which is

PoUi _ Cijkl [ O_XlO'_J j. (2.47)

Now that the equation of motion has been derived, the next step is to choose a

solution for the displacements as a function of time and space. For a plane wave, a

solution can be written as

Ui(Xk,t) ---- Aoaiei(Wt - k_x_) (2.48)

where A0 is the amplitude of the wave,

a i are the direction cosines of the particle displacement vector,

t is the time,

w is the angular frequency

and k m are the components of the wave vector.

The wave vector components (kin) are related to the direction cosines of the wave nor-

mal (Ira) and the wavelength (X) by the expression
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(2.49)

where k isthe wave number.

The solution for the displacement can now be substituted into the equation of motion.

This willlead to the followingexpression

Cijklk2111j_k----p0co2C_i (2.s0)

which can be rewritten as

(Cijkllllj -- P0V2_ik)C_k ffi0 (2.51)

where v isthe phase velocityof the elasticwave and isgiven by

co

v- k (2.52)

In equation (2.51),itisnoted that ak isarbitrary and thereforenot necessarilyequal to

zero. In order for this equation to have nontrivialsolutions,it must be true that the

determinant of the matrix of coefficientsmust equal zero. That is

{ Cijkllllj -- PoV2t_ik t _- O. (2.s3)

To more conveniently write thisequation,a matrix [Xik] isdefined by

Xik = Cijkllllj. (2.54)

Therefore, equation (2.53)becomes

[ Xik -- PoV26ik [ ---- O. (2.ss)

This isa characteristicequation which when expanded forms a cubic expressionin terms

of pov2 . Since )'ikis a symmetric matrix, the three solutionsfor p0v2 must allbe real.

The physical significanceof this is that for any arbitrary direction in an anisotropic
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medium, three plane waves may be propagated. The velocity of each of these waves

depends on the density, the elastic constants and the direction cosines of the wave nor-

mal. Thus, if the ultrasonic wave velocities are measured for a number of directions in

an anisotropic medium with known density and elastic symmetry, the linear elastic

stiffness moduli can be determined. Although not formally designated as such in the

preceding equations, these moduli will be the adiabatic stiffnesses.

The particle displacement vector direction cosines can be determined for each of

the three waves propagating along a given direction. This is accomplished by solving

for the eigenvectors for each eigenvalue (p0 v2) using the equation

PoV20q = )_ikak, (2.56)

and also applying the fact that

c_iOq = 1. (2.57)

These direction cosines determine the mode of the wave. If they are the same as the

wave normal direction cosines, that is

a i = li, (2.58)

then the particle displacement of the elastic wave lies along the direction of propaga-

tion of the wave. A wave of this type is referred to as a pure mode longitudinal

(compressional) wave. If the particle displacement is perpendicular to the propagation

direction and therefore

%1i = 0, (2.59)

then the wave is called a pure mode transverse (shear) wave. Illustrations of longitudi-

nal and transverse mode waves are given in Figs. 2.5 a) and b).
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Figure 2.5 - (a) Illustration of a longitudinal (compressional)

elastic wave demonstrating directions of particle

vibration and propagation.
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Figure 2.5 - (b) Illustration of a transverse (shear) wave.
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However, in general the wave need not be pure mode. It can be either quasilong-

itudinal or quasitransverse depending on which type of particle motion is more dom-

inant. Of the three waves propagating along a given direction, one is longitudinal or

quasilongitudinal while the other two are transverse or quasitransverse.

Another consideration of linear elastic wave propagation in an anisotropic

medium is that the direction of the energy flux of the wave may not in general be the

same as the direction of the wave front normal. That is, there may be a refraction of

the wave because of the anisotropy of the medium. The energy flux vector is defined as

the direction of the flow of energy per unit time per unit area. A diagram of the energy

flux deviation of a quasitransverse wave is shown in Fig. 2.6. Equations for expressing

the energy flux vector and its deviation from the direction of the wave normal are

reviewed by Green [5] and are presented here.

First, the expressions for the kinetic energy (K) and the potential energy (P)

which is contained in the wave field are given by

K = lfpfi_dr (2._o)

and

P = 2f%eijdr (2.81)

where dr is a volume element of the wave field.

The sum of K and P yields the total elastic energy E contained in the wave field which

is

=_1{i- 2 pia3dr + fcrijeijd . (2.62)

The time derivative of -= is then given by

1 0
0_---_-- f pfiiiiidr + _f-_--(%%)dr. (2.83)
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Figure 2.6 - Diagram of a quasitransverse elastic wave undergoing

energy flux deviation illustrating the directions of

particle displacements, wave normal, and energy flux
vector.
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To simplify this expression the term under the second integral is now considered. It can

be rewritten as

"_(_j£ij) "_--"O*ijeij + grijeij. (2.64)

a
Hooke's law (2.10) can now be substituted into this equation to express -_t (aijeij) in

terms of the elastic moduli and the strains as

-_-(%%) •Cijkl£kleij + Cijklekl£ij. (2.65)

Because of the symmetry of the elastic moduli, equation (2.65) can be rewritten as

-_-(%e_j) "= Cklijekleij + Cijklekleij. (2.66)

Again using Hooke's law this becomes

-_-(o'ijeij ) = O'kl_kl -+* O'ijeij (2.67)

which can be rewritten as

-_-(%_j) 2%eij (2.6s)

after the dummy indices k and 1 are summed out of the equation. The time derivative

of the strain in equation (2.68) can be rewritten in terms of the displacements using the

definition of strain as

_j- _- + _ (2.691

This is substituted into equation (2.68) resulting in

(2.to)
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which because of the symmetry of the stress tensor is

._- (_ij {Sij) O_i= 2crij--.
bkj

(2.71)

Equation (2.71) is now put back into equation (2.63) to give the time derivative of the

total energy of the elastic wave field as

o_1 i
<:9=-_ f p6.irdidr + f%_-:---dr. (2.72)

Since

_j °qui oqo]j
_-- ..-- q-l_l i ,

(%6_) % &, axj
(2.73)

or

c':%._ ,9 0%

°'iJ o_xj -- o':3xj (°'ijGi) -- Gi o,+:3xj
(2.74)

the second integral in equation (2.72) can be rewritten as

0%i
-- f _ai--z.---.dr"f_ij-_'Tdr = f-_-7(_ijGi)dr O°'iJ

• btxj
(2.7s)

Gauss's theorem can now be applied to the first integral of equation (2.75) to rewrite it

as a surface integral of the form

f-_jj (o_j_i)dr---- fcrijfiidS. (2.76)

This can be substituted into equation (2.75) which is then inserted into equation (2.72)

which gives

Oq_ [_ aO'ij ).

_ - f [PiJi- "_'j Jfli dr 4- f°'ijuidS. (2.77)
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The first integral equals zero because of the equation of motion (2.47). Therefore, it

remains that

0_=
-- J_ijuidS. (2.7"8)

f_ Q

o%

This equation represents the energy" flow into the volume element r through the surface

S. The energy flux vector with components E i can be formed which gives the energy flux

flowing outward from the volume r through S by

Ej -- -- o'ij6i. (2.79)

If the time averaged values E of the energy flux vector over one cycle of the elastic

wave are computed and it is defined that

(2.80)

then the direction cosines of the energy flux vector (E_) can be formed by

, Ei

E i -- ET
(2.81)

If

I

E i = Ii, (2.82)

then the wave propagates along the direction of the wave normal and there is no energy

flux deviation. Otherwise, the angle (6) of deviation of the energy flux from the wave

normal can be determined by

1 I

6 ---- Cos- (Eili). (2.83)

Therefore, to determine the elastic moduli by using ultrasonic velocity measure-

ments, a number of considerations must be examined. First, the elastic symmetry and
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thustheformof the elastic stiffness matrix must be known. Then a direction of propa-

gation must be chosen and the solutions for the velocities of the three waves that pro-

pagate along this direction must be calculated in terms of the density and the elastic

moduli. Also, any energy flux deviation of the three wave modes must be determined.

This is repeated for a number of different directions until enough independent equations

are derived to calculate all of the elastic moduli from the corresponding velocity meas-

urements. Usually, an attempt is usually made to choose directions which propagate

waves which are pure mode and suffer no energy flux deviations to make the measure-

ments as easy as possible. Unfortunately, this can not always be accomplished.

Brugger [42] published an equation which can be used to determine the pure mode direc-

tions for the various elastic symmetries. In general form this equation is

CijkCjlrslklllrl s = 0 (2.84)

where eijk is the permutation tensor.

It is defined by

if any i,j,k are equal

if i,j,k are in cyclic order

if i,j,k are in acyclic order

(2.85)

Also presented are the pure mode wave directions for the various elastic symmetries.

The specific case of elastic wave propagation in a unidirectionally graphite fiber

reinforced composite will now be discussed. First, the applicability of the previously

derived wave equations to a composite material must be considered with respect to the

heterogeneous nature of the medium. This violates one of the initial assumptions that

the medium be homogeneous. However, it is generally assumed that if the wavelength

of the elastic waves is much larger than the size of the inhomogeneity, then the material

is macroscopically homogeneous and the wave equations are applicable. In the materi-

als studied, the size of the inhomogeneity is given by the diameter of the fibers which is
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on the order of seven pm. In the frequency range used (_ 2.25MHz) , the wavelengths

for the different wave modes and directions of propagation ranged from about 700pm to

almost 5000#m. Therefore, the previously stated assumptions are valid as are the wave

equations.

Another important question is the use of Hooke's law because of the viscoelastic

nature of most polymeric materials. However, epoxies and their composites, because of

the high degree of crosslinking along the molecular chains, generally exhibit little viscoe-

lastic behavior. This is especially true at the temperatures at which these measure-

ments were made (room temperature). Measurements of the wave speeds and thus the

moduli as a function of frequency demonstrated no viscoelastic effects. Therefore the

application of Hooke's law appeared to be valid.

The appropriate elastic symmetry model for a unidirectionally fiber reinforced

graphite/epoxy composite must now be chosen in order to derive the specific solutions

for the velocities of ultrasonic wave propagation. The most common symmetry model

used for unidirectional composities is that of transverse isotropy. In a transversely iso-

tropic material, there exists a preferred axis perpendicular to which there exists a plane

in which the material behaves isotropically. In unidirectional graphite/epoxy, the fiber

direction (x_) is the preferred axis while the xlx 2 plane is the plane of isotropy as shown

in Fig. 2.7. Transversely isotropic behavior of unidirectional composites is based on the

assumption of a random distribution of fibers in the xlx 2 plane as well as alignment of

the fibers along the xs axis. The symmetry conditions for such a material are that it be

elastically insensitive to twofold (180 degree) rotations about each of the three axes as

well as insensitive to any rotation around the x3 axis. Application of these symmetry

conditions as shown in Appendix A demonstrates that there are only five independent

elastic moduli. The matrix form of the elastic stiffness moduli for a transversely isotro-

pic material is then given by
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Figure 2.7 - Illustration of axis designation in a unidirectional
fiber reinforced composite with respect to the fiber

direction and the lamina stacking direction.
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[CAB ] ----

cli ci2 c13 0 0 0

c12 ell c13 0 0 0

c13 c13 c33 0 0 0

0 0 0 c44 0 0

0 0 0 0 c44 0

Cll -- c12
0 0 0 0 0

2

(2.86)

However, iffor some reason the fibersare not randomly spaced in the xlx2 plane,

this plane willno longer be elasticallyisotropic.In this case,the material willpossess

an orthotropicsymmetry. This might occur ifbecause of the lay up processof manufac-

ture there was a resinrich layer between each lamina as shown in Fig. 2.8 or ifsome of

the laminae were misoriented. The resultingorthotropic material would now have only

the two fold symmetries about each of the three axes as is the case with cross ply or

angular ply composite lay ups. For this symmetry the number of independent linear

elasticmoduli increasesto nine as shown inAppendix A. The matrix form of the moduli

isthen

CII C12 C13 0 0 0

C12 C22 C23 0 0 0

Cl3 C23 C3Z 0 0 0

0 0 0 C44 0 0

0 0 0 0 css 0

0 0 0 0 0 csl

(2.87)

Ultrasonic velocity data can be compared with the equations derived for both

models to determine which gives the best fitto the data. The derivations of the equa-

tions for the velocity as a function of density and elasticmoduli for a number of

differentdirectionsand pure wave modes for transverselyisotropicand orthotropicsym-

metries are presented in Appendix B. However a summary of the resultsispresented in
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Figure 2.8 - Illustration of unidirectional composite with resin

rich regions between laminae causing the material to

have orthotropic elastic symmetry.
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Table 2.1. To determine all of the elastic moduli for the two models, several nonpure

mode waves must be used. The results for these waves are presented in Table 2.2.

ILC. Experiment

In most of the ultrasonic velocity measurements made in this study, a pulse echo

overlap velocity measurement system was used. This system was briefly discussed in the

Introduction. However, the details of its operation will now be discussed. Figure 2.9

shows a block diagram of the entire pulse echo overlap system. A Matec model 6600

pulse modulator and receiver was used to generate an electrical tone burst of variable

amplitude and frequency. This was used to excite an ultrasonic transducer (typically

undamped crystals of quartz or PZT with fundamental resonances of approximately

2.25 MHz.} which excited ultrasonic waves into the graphite/epoxy samples. The result-

ing echoes from the back surface of the specimen were detected by the same transducer

and converted back into electrical signals. The received signals were input into the

receiver and amplified. After amplification, they were displayed on a Hewlitt Packard

(H.P.) 1743A dual trace oscilloscope. A typical pulse echo pattern is shown in Fig. 2.10.

The echoes appear identical to the generating signal (main bang) except for an exponen-

tial decrease in amplitude due to attenuation in the sample.

To have the pulse echo pattern appear stable on the oscilloscope, the Matec gen-

erator and the H.P. 1743A oscilloscope must be triggered simultaneously. This was

accomplished by using the triggering components of the pulse echo overlap system. The

signal from a continuous wave (c.w.) oscillator (Matec model 110) was input into a

Matec 122B decade divider and dual delay generator. The Matec 122B divided the ori-

ginal signal by a preset amount (typically 1000} and then generated a trigger signal at

the divided frequency. This is demonstrated for frequency division by five in Fig. 2.11.
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Table 2.1 - Equations for pure mode linear elastic wave propagation in

transversely isotropic and orthotropic media.

Propagation

Direction

Cosines

ll----I

12= 0

13----0

ll----0

12= 1

13= 0

ll=0

12----0

Is== 1

Particle Displacement Wave Transversely

Direction Mode Isotropie

Cosines Model

al=l a2=0 as=0 PL

alffi0 a2--1 as=0 PT

at=0 a2---0 a3=l PT

al=l a2---0 as=0 PT

a1=O a2=l aa=0 PL

al----0 a2-----0 as=l PT

at=l a2=0 as=0 PT

all0 a 2=1 as=0 PT

alffi0 a_=O as----I PL

Orthotropic

Model

p0 v2 = ell p0 v2 = ell

1 c
pov2 = _( . - c12) poV2 = c66

pOv2 = c44 pov2 ----c_

1
pov== _'(cll- c12) poV2= co6

pov2 = clt pov_ = c_

pov_ = c44 pov2 = c4,

pov2 ----c44 pov2 ----c55

pov2 ----c44 pov2 -----c44

pov2 = c_ pov2 = eaa
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Table 2.2 - Equations for non pure mode, off axis linear elastic wave

propagation in transversely istotropic and orthotropic media.

Transverse Isotropy

pov2Propagation

Direction

Cosines

12=0

ll----0

1
12= -:_

13-- 0

Wave

Mode

QL

PT

QT

QL

PT

QT

PL

PT

PT

1[ ]4 cH+ 2c,,+ ¢_ + _/(cH - c_): + 4(c,3+ c,,)_

I I(c11_c,2)+ c,_
2 2

1 |ellI" -b 2c44-b c33-- _/(Cll- c33)2-t - 4(c13 + c44)2| ]7 t .]

Same as QL above

Same as PT above

Same as QT above

Cll

C44.
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Table 2.2 - (Continued)

Orthotropy

p0v2Propagation

Direction

Cosines

12--0

1
13=

11=0

1
Ii =

1
12=

13----0

Wave

Mode

QL

PT

QT

QL

PT

QT

QL

PT

QT

i[ ]¥ c n + 2c_ + e33 + "_/(en -- e33)2 + 4(c13 + e_) 2

7 ell + 2Cfi6 + C33 -- _t(Cll -- ¢33) 2 + 4(C13 + C55 )

1[ ]¥ c,_ + 2c,t4 + e_ + _/(e_ -- c_) 2 + 4(e_ + c,l,l)2

'_ ]]- c= + 2c,,+ c= - _/(_= - _): + 4(c_+ c,,)_

1[ ]¥ c, + 2c,0+ _=+ V(_.,,- c=)_+ 4(c,_+ c,,)_

7
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Figure 2.9 - Block diagram of pulse echo overlap system.



-53-

TIME

Figure 2.10 - Illustration of a typical pulse echo pattern

demonstrating voltage versus time.
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The trigger signal was then used to trigger both the Matec model 6600 and the oscillo-

scope. The Matec model 122B also generated a dual strobe which was input into the z

axis of the scope. This had the effect of intensifying two chosen regions of the oscillo-

scope trace. The width and spacing of the strobes was variable.

The high accuracy in measuring the time between two echoes needed to compute

the velocity arises because of a special triggering technique. First, the echo pattern was

set up as previously described. The strobes were set so that two echoes were intensified

on the trace and the scope intensity control was adjusted so that only these two echoes

remained visible on the trace. Then, using another output of the Matec model 122B, a

trigger signal was applied to the oscilloscope which was at the original rate of the

Matec oscillator which was typically 1000 times faster than the trigger rate of the

Matec model 6600. This caused an oscilloscope trace to be drawn out 1000 times during

the single pulse echo cycle of the Matec 6600. The effect of this, because of the per-

sistence of the oscilloscope screen, was to make the two echoes appear together on the

screen as shown in Fig. 2.12. If the trigger frequency was adjusted, the two echoes could

be caused to coincide on the screen or "overlapped" as shown in Fig. 2.13. The fre-

quency (f) of the Matec c.w. oscillator at which this occurred was related to the time

between echoes (t) by

t- n (2.88)
f

where n was an integer.

By measuring two successive overlap frequencies (fl,f2), the integer n could be taken out

of the equation and the time of flight then given by

(2.89)

A number of overlap frequencies were measured and the results averaged to get a more

reliable value for t. The main uncertainties of the measurement of t were the
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Figure 2.11 - Illustration of frequency division of a continuous

wave (c.w.) source by the Matec model 122B by a
factor of five.
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Figure 2.12 - Illustration of an oscilloscope trace of two echoes
during the pulse echo overlap technique where the
echoes are not properly overlapped.

Figure 2.13 -lllustration of two properly overlapped echoes.
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uncertainty in the operator's visual ability to detect the overlapped condition and the

uncertainty in the measurement of the c.w. oscillator frequency.

Because of time delays of the ultrasonic pulse in the bond and phase shifts at the

specimen-transducer interface, corrections had to be made to determine the true time of

flight (5} from the measured time (t). The theory for these corrections was presented by

McSkimmin [19] and is outlined in Appendix C. In this theory it is necessary to deter-

mine the frequency of the ultrasonic pulse. This was accomplished by inputting the tone

burst into a mixer (Anzac MD-40) along with the signal from a H.P. 3325A frequency

synthesizer/function generator. The output of the mixer was then input into a Tek-

tronix 53C oscilloscope. The output of the mixer was the sum and difference frequencies

of the tone burst and the H.P.c.w. source. If they were of the same frequency, the out-

put of the mixer was a constant voltage (0 Hz) dependent on the phase difference

between the two signals. This phase difference was variable each time the Matec 6600

was triggered and thus a series of parallel lines was generated on the scope trace. This

is shown in Fig. 2.14. If the frequencies were different, then the output would have the

difference frequency again phase shifted on each new trace. Therefore, the frequency of

the tone burst from the Matec 6600 could be monitored by the frequency of the H.P. fre-

quency synthesizer.

The remaining equipment was used to collect data. A Tektronix 4051 computer

was used to read the trigger frequency values and calculate the time of flight which was

used to calculate the velocities and the moduli. The program used to control the pulse

echo overlap data acquisition and analysis is shown in Appendix D.

There were a number of factors which affected the size and geometry of the sam-

ples used. They had to have parallel sides to be used in the pulse echo technique. Also,

the thicker the specimen, the more accurately its time of flight could be measured.

However, because of the high ultrasonic attenuation of graphite/epoxy composites, espe-

cially for shear waves, there were limits on the maximum thickness. Also, limits on
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I 1
Figure 2.14 - Illustration of the oscilloscope trace of the output

of a mixer when the input c.w. and pulse sources are

of the same frequency.
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sample thickness occurred because of the desire to have the wavefront remain planar.

The distance (d) over which the wavefront remains planar was given by Mason [43] as

R _
d _ N (2.90)

2k

where R is the radius of the transducer

and k is the wavelength of the ultrasonic wave.

However limitations on the thickness because of the large attenuation usually occurred

before this requirement became important. There were also restrictions on the lateral

dimensions of the samples. The equation of motion are based on the assumption of a

wave propagating through a unbounded medium. However, ultrasonic velocities have

been shown by Tu et al. [44] to be independent of lateral dimensions if the sample was

at least two and one half times the acoustic wavelength.

The above constraints provided the basis for the choice of the sample geometries

used. Ideally, the measurements of the elastic moduli would be made using only one

sample to avoid any problems with sample to sample variations in the elastic properties.

These problems are especially prevalent in polymer composite materials where elastic

property variations may occur not only from batch to batch due to different curing pro-

cedures but also within a given batch because of regional variation of fiber content, void

content and other important parameters. However, because of the above constraints

and the necessity to use off axis non pure mode wave propagation to determine some of

the moduli, several samples were required. These samples were all cut from a 150 ply

laminate of T300/5208 unidirectional graphite/epoxy that was nominally 12 X 15 X 0.9

in. (30.5 X 38.1 X 2.3 cm.) after cure. This panel was designated MCIS 1 and layed up

and cured at NASA, Langley Research Center. The finished panel was ultrasonically

C-scanned by the Materials Characterization and Instrumentation Section at NASA

Langley for the presence of gross voids or delaminations. None were found to be

present. A number of tensile and compression samples were then cut and machined
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from this panel. Those used for the ultrasonic testing were MCIS 1.10A, 1.8A, 1.10B,

1.7A, 1.5 A,B,E and F and 1.6A. whose dimensions are listed in Tables 2.3 and 2.4. The

samples were generally flat and parallel to +/- 0.0003 in. (0.0007{} cm.) or better. Sam-

ples MCIS 1.10A, 1.8A, 1.10B and 1.7A were all rectangular parallelepipeds with their

faces oriented perpendicular to the three coordinate axes. The densities for each are

also given in Table 2.3 which show some sample to sample variation. The remaining

samples were cut to allow wave propagation in a direction that was 45 degrees between

two of the axes and perpendicular to the third. These samples were used to propagate

the waves listed in Table 2.2. The sample dimensions are given in Table 2.4. The densi-

ties of these samples were not measured but the value of 1.54 g/cm s was used for all cal-

culations involving these specimen.

Measurements of the pure mode longitudinal wave speeds along each of the three

coordinate axes were made using specimen MCIS 1.10A. Specimen MCIS 1.8A, 1.10B

and 1.7A were used to determine the six different combinations of polarization and pro-

pagation directions for the pure mode shear waves along the three axes. The velocities

and the product p0v2 for each of these waves are shown in Table 2.5. The uncertainties

for the shear wave velocities were larger than those of the longitudinal velocities

because of the much higher attenuation of shear waves. Even using the thinner speci-

men for the shear waves did not overcome the high attenuation. This resulted in a

much smaller amplitude second echo which was difficult to reproducibly overlap. The

uncertainty in the longitudinal velocity along x3 was also large because of the high velo-

city and thus the short time of flight along this direction.

The measured values were then compared with theory to check for transversely

isotropic behavior. The products p0v2 calculated using the longitudinal waves along

x 1 and x 2 in sample MCIS 1.10A should be equal as should the products calculated from

the two shear waves propagating along x 3 in sample MCIS 1.SA. Comparisons for the

other similar products were not valid because they were obtained on different samples.
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Table 2.3 - Sample dimensions and densities for samples used for pure
mode elastic wave propagation.

Sample Dimensions(in.) Density
Number x1 x2 x3 (g/cma)
1.10A 0.8001 0.7999 0.8002 1.5404+/- 0.0004

1.10B 0.7999 0.5002 0.7996 1.5460 +/- 0.0006

1.8A 0.8002 0.8000 0.5002 1.5384 +/- 0.0005

1.7A 0.5001 0.8001 0.7999 1.5411 +/- 0.0005

Table 2.4 - Sample dimensions for samples used for off axis, non pure

mode wave propagation.

Sample Dimension (in.) along axis Dimension (in.) along axis

Number 45 degrees between axes

1.5A 0.4499 xl, x3 0.9 x2

1.5B 0.5000 xl, xa 0.9 x2

1.5E 0.4491 x2, x s 0.9 x 1

1.5F 0.4993 x2, x s 0.9 x 1

1.6A 0.5001 x 1, x 2 0.9 x z

Table 2.5 - Data for pure mode linear elastic wave propagation.

Sample Propagation Polarization Velocity p0v2

Number Direction Direction (10Scm/s) (GPa)

1.10A x 1 x_ 3.0467 +/- 0.0005 14.295 +/- 0.005

1.10A x2 x2 3.0390 +/- 0.0008 14.226 +/- 0.006

1.10A x z x z 8.390 +/- 0.007 108.4 +/I- 0.1

1.7A x 1 x 2 1.557 +t/- 0.002

1.7A

1.10B

1.10B

1.8A

1.8A

Xl

x2

x2

x3

x3

x3

Xl

x3

Xl

x2

1.849 +/- 0.003

1.558+/- o.oo3

1.850 +/- 0.003

1.850 +/- 0.002

1.851 +/- 0.002

3.736 +/- 0.007

5.27 +/- 0.01

3.75 +/- 0.01

5.29 +/- 0.01

5.265 +/- 0.008

5.271 +/- 0.008
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In the first comparison, the difference was larger than experimental error. However, it

was still quite small and thus the deviation from transversely isotropic elastic behavior

was small. In the comparison of the shear wave products, the difference is smaller than

experimental uncertainty. Thus, overall the elastic behavior of the material was very

nearly transversely isotropic for linear elasticity.

Using the data presented in Table 2.5, four of the transversely isotropic moduli

can be calculated using the equations from Table 2.1. Also, six of the nine orthotropic

moduli can be calculated. However, to determine the transversely isotropic cl3 and the

orthotropic c12,cla, and c_, off axis quasilongitudinal and quasishear mode waves had to

be used. The samples used for these measurements were MCIS 1.5 A,B,E and F and

1.6A. As pointed out by Kriz and Stinchcomb [45], these wave modes suffer energy flux

deviations as large as 43 degrees which impose further specimen size requirements. The

basic requirements are that the sample was thick enough to allow the two quasi-mode

waves to separate into distinct wave forms and thin enough so that the deviation of the

wave did not cause it to impinge on the side of the specimen. The energy flux deviation

and large attenuation also prevented the use of the pulse echo method for the velocity

measurements. For these measurements, two transducers were used in a through

transmission arrangement. The time of flight was first measured through a fused quartz

delay line. Then it was measured through the delay line and the specimen for the

different wave modes. The difference between the two was taken to be the time of flight

and used to calculate the velocity. The uncertainty of this method is much larger than

the pulse echo overlap method resulting in much reduced accuracy. The results are

shown in Table 2.6 which show large scatter due to uncertainty in the measurement as

well as material variations.

Using the data from Tables 2.5 and 2.6 with the equations from Tables 2.1 and

2.2, the independent elastic moduli were determined for both the transverse isotropy

and orthotropy models. The results are presented in Table 2.7. Where possible, the
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multiple results were averaged except for c13 and c23 where there was a wide range of

values. This wide range was due to the large uncertainty in the measurements which

propagates into an even larger uncertainty in the calculated values. The values

presented for c13 and c23 were calculated using the quasishear data because the quasi-

longitudinal data yielded complex values for the moduli.

The values for the transversely isotropic model can be compared with those

reported by Kriz and Stinchcomb [45]. They reported data for the moduli of T300/5208

graphite/epoxy measured ultrasonically as well as the values theoretically predicted

from the properties of the fibers and matrix. The theoretical values are derived for an

assumed volume fraction of fibers of 0.67. These are all presented in Table 2.8. The

values all compare favorably except for c_ which was much lower in the present study.

The lower density of the samples used in the present experiments implies that there may

be a lower fiber content and/or a higher void content. This would account for some of

the discrepancy in the value of c_. There may also be some misalignment of the fibers

along the x3 axis which would also lower the value of ca_ although there is no other

confirming evidence of this fact. The values of Kriz and Stinchcomb also show much

more scatter demonstrating sample to sample variations.

To calculate the nonlinear elastic moduli, the isothermal linear elastic compli-

ance moduli are also needed. The adiabatic compliance moduli can be obtained by

inverting the stiffness matrix. Corrections for differences in adiabatic versus isothermal

moduli can then be applied if they are larger than the uncertainties of the inverted

values. For the case of transverse isotropy the compliances are given by the following

equations,

CllC33 _ C123

Sll ---- C33(C21 -- C122) -b 2C23(C12 -- Cll ) '

Cll -_- C12

(2.91)

$33 ffi C33(C11 -b C12) -- 2C23 ' (2.92)
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Data for off axis, non pure mode linear elastic wave propa-

Sample

Number

Propagation Wave Velocity

Direction Mode (106cm/s)
t

Perpendicular to

1.5A x2

1.5A x2

1.5B x2

1.5B x2

1.SE xt

45 degrees between

X D X3

XD X3

X D X 3

Xl_ X3

X2_ X3

1.5E xl x2, xz

1.5F xl x2, x3

1.5F xt x2, x3

1.6A xs xt, x2

1.6A xa xl, x2

QL

QT

QL

QT

QL

QT

QL

QT

QL

QT

po v2

(GPa)

Assuming

P0 ffi 1.54g/cms

5.78 51.4

2.47 9.40

5.73 50.{}

2.38 8.72

6.00 55.44

2.42 9.01

5.86 52.9

2.40 8.87

3.043 14.26

1.558 3.74

Table 2.7 - Measured linear elastic moduli for transversely isotropic

and orthotropic symmetries.

Transversely

Isotropic

Modulus

Cll

c12

c13

c33

c44

Value

(GPa)

14.26

6.78

3.0- 8.9

108.4

5.27

Orthotropic

Modulus

Value

(GPa)

C33

cli 14.295

c12 6.78

c13 3.3 - 9.0

108.4

C44 5.28

c_ 14.226

c23 6.6 - 7.7

c_ 5.27

c6_ 3.74
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Table 2.8 - Comparison of measured transversely isotropic

data with that presented by Kriz and Stinchcomb [45].

stiffness

Modulus Present

Work

(GPa)

ell 14.26

c12 6.78

c13 3.0- 8.9

c_a 108.4

e44 5.27

Kriz and Stinchcomb

I
Experiment Theory

15.0- 15.7 14.5

7.10- 7.58 7.24

6.96 - 9.09 6.50

154 161

7.84 7.10
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--(C12C33 -- C23)
(2.93)

S12 -_ C33(C21 -- C122) + 2C23(C12 -- Cll ) '

c13(e12- eli)
(2.94)

s13- e33(e_l-- e_) + 2e_Z(el_- ell)

and

1
$44 -- . (2.95)

C44

Because of the large uncertainty in Cls ,there isa variation in the possiblevalues for

the compliance moduli. The values for the compliances for the two extreme values of

ctsare given in Table 2.9. The wide variation in the values of c13has littleeffectexcept

on the modulus Sls.

The inversionof the orthotropicstiffnessmoduli yieldsthe followingequations

C22C33 _ C223

$I I = Cl1(C22C33 -- e223) _ c12(e12e33 _ 2e13e23) _ e123e22 , (2.96)

CiiC33 m C123

s22ffie.(e22cz3--e_3)--e12(e_2e_3--2e13e_3)--c_3e22'(2.97)

c11e22 -- c122

$33 _ Cli(C22C33 -- C23) -- C12(C12C33 -- 2C13C23) -- C123C22 , (2.98)

1
$44 -- , (2.99)

C44

1
$55 -- , (2.100)

C55

1
$66 -- , (2.101)

C66

--(C12C33 -- C13C23 )

$12 ffi C11(C22C33 __ e23) _ c12(c12c33 _ 2c13c23) _ c123c22 , (2.102)

C12C23 -- c13e22

__ 2 (2.103)s13ffi ell(e2_e_ e_3)-- e12(e12e33-- 2elze23)-- elze22
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Table 2.9 - Calculated linear elastic compliance values using ultrasonic

stiffness data for transversely isotropic and orthotropic symmetries.

Compliance Moduli (GPa) -I

Transverse Isotropy

Modulus cls--3.0 c13= 8.9

Sll 0.091 0.093

s12 -0.043 -0.041

sis -0.0013 -0.0042

s_ 0.0093 0.0099

s44 0.19 0.19

Orthotropy (c= = 7.2)

Modulus cls = 3.3 cls = 9.0

sll 0.090 0.093

s,22 0.093 0.092

s_ 0.0095 0.0098

s44 0.19 0.19

s_ 0.19 0.19

sss 0.27 0.27

sis -0.043 -0.042

S13 0.00011 -0.0049

s23 -0.0049 -0.0026
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and

--(CllC23 -- C13C12 )
S23 ---- . (2.104)

c11(c22c33- c 3) - c12(c12c33- 2c13c:3)- c13c22

The calculated values for these moduli are also presented in Table 2.9. Again there was

a narrow range of values except in the constants s13 and s23 because of the large uncer-

tainty in cla and c2s •

The isothermal correction for these adiabatic compliance moduli can be calcu-

lated using equation (2.34). The temperature of these measurements was nominally 24

C and the density was 1.54 g/cm a . The coefficients of thermal expansion for similar

unidirectional carbon/epoxy composites were given by Hull [46] as

al = a2 = 30 • 10-_/C and a3 = - 0.2 • 10-6/C and the specific heat was given by as

Cp = 2.1 J/gC (unpublished data from C. Welsh, 1986). Using these values, the max-

imum correction term was only about 7 • 10 -6 GPa -1 which was much smaller than the

uncertainty of the calculated values. Thus the difference between the adiabatic and the

isothermal values for the compliance moduli was negligible.

Some of the elastic compliance moduli were also measured using static compres-

sive loading with bonded strain gauges to measure the strain. The theory for this is

based on Hooke's law. If a unidirectional stress is applied, for example, along the xl

axis, the strain can be written as

gl = S110"1, (2.105)

g2 = S120"1, (2.106)

53 = S130"1 (2.107)

and

£4 = £5 = £6 =0. (2.108)
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Thereforethemodulicanberewrittenas

deA
StA- d_rl (2.109)

or in more general form as

deB

SAB -- de A , (2.110)

for a unidirectional stress along the A axis. Therefore the stress and strain can be meas-

ured and the slope of the stress-strain curve will provide the moduli.

The samples used in these measurements were cubes nominally 0.7 in. (1.8 cm.)

on a side oriented with faces perpendicular to.the coordinate axes. They were also cut

from the panel MCIS 1 and were designated MCIS 1.8D and E. The load was applied

with a MTS 810 load frame in compression and the calibrated output of the load cell

was input into a H.P. 3478A digital multimeter. To insure that the load remained uni-

directional, a fixture was designed and inserted into the load frame that placed the

upper compression plate on a ball bearing. This allowed the compression plate to com-

pensate for any slight lack of parallelism in the specimen. Fig 2.15 illustrates this

fixture. The strains were measured with Measurements Group Inc. 350_ strain gauges.

The surfaces of the samples were cleaned according to manufacturer's instructions and

the strain gauges were then bonded onto the samples. A conventional Wheatstone

Bridge circuit was used with a H.P. 6002A power supply providing a five volt input and

a H.P. 3478A voltmeter measuring the output voltage. A Tektronix 4051 computer was

used to read the data. from the voltmeters and calculate stress, strain and the resulting

modulus. The control program is shown in Appendix E. Fig 2.16 shows the block

diagram for the experimental set up. During each test, a u_idirectional stress was

applied and the corresponding strain was measured in two directions. One direction

was parallel to the direction of applied stress while the other was perpendicular. Then
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8all 8earing

- Upper CompressionPlate

Specimen

-,----Lower Compression
Plate

Figure 2.15 - Diagram of the compression fixture used during the

static loading for the measurement of the elastic

compliance moduli and the uniaxial stress acoustic

constants.
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POWER

SUPPLY

H P 6002A

I

WHEATSTONE !

BRIDGE

CI RCUIT

I

._ VOLTMETERH P 5478A

LOAD

FRAME COMPRESSION

MTS810 LOAD

_A FIXTURE

MPLE

STRAIN

LOAD GAUGE

CELL

t VOLTMETER
H P 3478 A

COMPUTER

TEKTRONIX

4051

Figure 2.16 Block diagram of the apparatus used for static
measurement of the linear elastic compliance

moduli.



- 72-

the sample was reoriented to apply stress in a different direction.

The resulting values for the compliance moduli are given in Table 2.10. The shear

moduli s44, sa5 and s66 were not measured by this technique. Again the deviation from

transversely isotropic behavior is quite small as demonstrated by the good agreement

between sll and s_2 and between s13 and s_ for the orthotropic moduli. These values

compare favorably with the values obtained from the inversion of the ultrasonic data

except for the value of sl2 • This discrepancy could be caused by error accumulation in

the inversion of the stiffness moduli of it could be due to inaccuracy of the static meas-

urement. Ledbetter and Read [47] also compared static measurements to ultrasonic

measurements for a NbTi fiber reinforced Cu composite and reported discrepancies in

the off diagonal moduli. The measured values can also be compared to those presented

by Garber [48] which are listed in Table 2.11. His measurements were made in tension

on thin laminates of T300/5208. Because thin laminates were used, s12 was not meas-

ured. The values compare favorably except for s33 • This is consistent with the lower

value of c33 reported earlier for the material in the present study.

II.D. Conclusion

The linear elastic stiffness and compliance moduli of a unidirectional

graphite/epoxy composite have been measured by ultrasonic and static measurements.

These measurements demonstrate a measurable deviation from transversely isotropic

behavior. However, the deviation is very small, especially when compared to material

variations from sample to sample, and thus the assumption of transverse isotropy for

the linear elastic behavior of this material is valid.

Comparisons of the present data with that presented in the literature for similar

materials are favorable except for the values of c33 and s_ . The difference in these
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Table 2.10 - Measured linear elastic compliance values for transversely

isotropic and orthotropic symmetries.

Transversely

Isotropic

Modulus

Value

(GPa)-1

Orthotropic

Modulus

Value

(GPa)-1

Sll 0.089 Sll 0.0890

s12 -0.063 s12 -0.0626

s13 -0.0021 s13 -0.00208

s33 0.00935 s33 0.00935

s_ 0.0891

s23 -0.00215

Table 2.11 - Comparison of measured compliance values with those

presented by Garber [49].

Modulus

Sll

S12

Present

Work

Garber

(GPa) -1

s13 -0.0021 -0.0025

s33 0.00935 0.0078

0.089 0.0921

-0.063 not measured
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modulitogetherwith a lowermeasureddensitymayindicatea lowerfibervolumecon-

tent or a highervoidcontentin thematerialof thepresentstudy. It alsomayindicate

eithera pooralignmentof thefibersor a wavinessof thefibersalongthefiberaxis.

The comparisonsof the ultrasonicand static data are goodexceptfor the

modulussz2• Thedifferencemaybeanartifact of themeasurementor thecalculations

usedin the comparisons.Becauseof the higher accuracy of ultrasonic measurements,

the values used in the computation of the nonlinear moduli in the next chapter are

those obtained by ultrasonic measurements except in the case of sis where large uncer-

tainties exist.
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Ill. NONLINEAR ELASTICTIY

ITI.A. Introduction

Using the linear elastic stiffness and compliance moduli presented in the previous

chapter, the nonlinear elastic moduli can be calculated from measurements of the stress

dependence of the ultrasonic "natural" velocity. In this chapter, the theory of how this

is accomplished will be presented along with actual measurements and calculations for

the unidirectional graphite/epoxy composites being studied.

HI.B. Theory

The theory for nonlinear elasticity differs in several respects from the theory of

linear elasticity which was presented earlier. The first major difference is that the

assumption of infinitesimal deformation is no longer valid. Therefore, the strain tensor

must be defined using either the Lagrangian or Eulerian definitions. In this work the

Lagrangian formulation will be used. The constitutive equation (i.e. relation between

stress and strain) must be extended to include higher order terms. Also the strain

energy function must be extended. It is given by Brugger [12] as

1 1

¢ -_ _'Cijkl_Iij/Tkl "}" _'Cijklmn_ij_Tkl_Tmn -_- "" " (3.1)

1
The numerical coefficient for each of the terms is _.t where n is the order of strain for

that term. The Voigt reduced notation can be used to rewrite this equation as

1 2 1 3

1 2
+ -A-_CAABrlA_ + _ CABVrlA_d + ...

_A_B A<B<D
(3.2)
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where no sum is implied except where indicated and the capital indices range from 1 to

6.

The definitions for the elastic moduli are similar to those of linear elastic theory.

The higher order adiabatic and isothermal moduli were defined by Brugger [12] as

Cijklmn..._ PO O_TijO_TklO_Tmn . . . ,

T { _F 'Jr (3.4)Cijklmn.. _ PO 'O_ij_klGD_m n . . . ,

Sijklmn... _ -- P0 _ijOtklC-_m n . . .

and

T { c_gnG L (3.6)Sijklmn... ffi -- PO 'O_ijC.Y_klO_mn . . . •

However, in thisresearch,the third order moduli were obtained by measuring the stress

derivative (isothermal)of the ultrasonic velocity (adiabatic). Therefore the resulting

moduli were the "mixed" third order moduli as defined by Brugger [12] as

Cijklmn ( O'_mn JT
(3.7)

or in reduced notation

(3.s)

They are relatedto the pure adiabatic thirdorder moduli by

S M
Cijklinn _ Cijklmn + --

T

PoCT

S
CmnopO_op _ijklqr_qr -- (3.9)

or
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P0C---_ CDECeE
(3.10)

However, again the differences are usually small and therefore less than experimental

uncertainty.

Using the same arguments based on symmetry of the stress and strain tensors

and the existence of the strain energy function, the number of independent third order

elastic moduli can be reduced to 56 for the most general anisotropic material. Further

considerations of the symmetry of the material reduces the number to 20 for an ortho-

tropic material and 9 for a transversely isotropic material as shown in Appendix F. For

the orthotropic case the independent moduli are cm, c112, Cns , c1_ ,

C123,c133,c144,c155,C16d,C222,C223,C233,c244,C2f_,C26e,C333,C344,C3_,C36e and c_s • All other

moduli are equal to zero. The independent moduli for transverse isotropy are

cm, Cn2, Clla,c123,c13a,c144,ci_, caaaand c_4 with the following relationsfor the other

moduli

c222 = Clll,

c223 _ c113,

c255 = c144,

c244 _ c155,

c122 _ c112,

c355 _ c344

c166 _ c266 --

C233 _ C133

1
-- --(ell 1 -- c112)

4

1

c366 _ "_-(Cll 3 -- c123)

1 (c15 s _ c144 )
c456- 2

(3.11)

with allremaining CASD ----0.

As mentioned previously,these moduli can be obtained from measurements of the

stressderivativeof the ultrasonic"natural" velocity. The theoreticalbasis for thiswas

presented by Thurston and Brugger [14]. They rederived the equation of motion for a

small amplitude elasticwave propagating in a homogeneously stressedmedium using the

followingnotation. The coordinatesaireferto the positionof a point of material in the

"natural" or unstressedstate. Xi are coordinatesof the homogeneously stressedmaterial
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or the material in the initial state while xi refer to the material in the stressed state

deformed by the small amplitude elastic wave. The vector components u i are the com-

ponents of displacement from the initial state due to the elastic wave and are given by

U i ----X i --Xi. o (3.12)

U i are the components of displacement referred to the natural state and are related to

u i by

ui ffi q. (3.13)

The wave equation was then presented as

S O_Uk

PoU.j ---- Ajkpm _apa m

where-refers to values in the initialstate

s
and Aikpm isgiven by

S OXj(:TX k ~ S

Ajkpm = _jk_pm -{- _ Cpqmi"

(3.14)

(3.15)

A solution in terms of the "natural" velocity was chosen of the form

uj ---- Aje iw(t - a_.JW) (3.16)

where PCisa unit normal in the natural state.

This solutionimpliesthat a wave with a wave front which isa material plane with unit

Substitu-normal N moves from the plane N • _* -- 0 to N • _" -- L0 in the time L0/W .

tion of this solution yielded the propagation conditions

p0W2Uj ---- _jkUk (3.17)

where OJjkisgiven by
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Wik ---- NrNs(_ikt_rs q" (_qk + 2_qk)C'iSqs) • (3.18)

The eigenvector U is normalized so that its components are the direction cosines of the

particle displacement with respect to the natural state. Differentiating equation (3.17)

with respect to pressure (p) and evaluating at zero pressure yields

(p0w%- 0 _- (OjO)jkUk)p - 0 (3.19)

which was reduced to the following forms for the conditions of hydrostatic pressure and

uniaxial compressive stress. For hydrostatic loading,

-(p0w% --o-- 1 +2WFHc +GHc (3.20)

where FHC = sTar,UrU, , (3.21)

T (3.22)GHC = saauvCuvproaNpNqUrU s ,

and w ffi (poW2)0 = (pv2)o = cSrqsNpNqUrV, . (3.23)

For uniaxial loading the equation reduced to

-(poW:);-0= 2Wruc+ Gu¢, (3.24)

where Fu¢ and Gu¢ are given by

Fuc = S£rsMaMbUrU s (3.25)

and

Guc = s_TuvcuvprqsMaMbNpNqUrUs (3.26)

and M i are the components of a unit vector in the direction of stress.

It is assumed for the uniaxial case that the direction of propagation is always perpen-

dicular to the direction of stress.
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Theseequationsproviderelationshipsbetweenthe linear elasticstiffnessand

compliancemoduli,the third orderelasticmoduliand the derivativeof the "natural"

velocitywith respectto stress.However,the measurementsmadein this studywereof

the StressAcousticConstants(H)whichweredefinedbyHeyman[31]andCantrell[49]

to be

2,= (p0w)p-0

Since there were a number of different orientations of stress and propagation and polari-

zation directions, the different SAC's were designated with three subscripts as Hij k .

The first subscript gave the direction of applied stress which was limited to one of the

three axes for these experiments. A zero for the first subscript implies hydrostatic load-

ing. The second and third subscripts were the directions of propagation and polariza-

tion of the ultrasonic wave respectively. These again were limited to being pure mode

waves along the three axes.

Using this notation, the equations for the SAC's were derived for both the models

of transverse isotropy and orthotropy. The results for the 27 cases considered are given

in table 3.1.

III.C. Experiment

The measurements of the stress derivatives of the "natural" velocity were carried

out using some of the samples that were used in the previously described ultrasonic velo-

city measurements. Sample MCIS 1.10A was used for the measurements of the longitu-

dinal velocity derivatives while samples MCIS 1.8A, 1.10B and 1.TA were used in the

shear wave measurements.
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Table 3.1 - Stress Acoustic Constant Equations for transversely isotro-

pic and orthotropic media.

Transverse Isotropy

1 + 2c11(Sll "t"s12 -t- Slz) + (Sll -t- sis + SlZ)(Clll + c112) + (2Sl 3 + S33)CII3

HOl I = -- 2Cll

Ho22 --- Holl

1 + 2c_(2s,_+ _) + 2(s_ + s_ + s_s)¢,_+ (2s,_+ s_)¢_
Ho_ ffi - 2c3s

Ho31 = - 2c44

Ho_ = Ho3z

I "_-(Cli -- CI2)(Sll "}" S12 -}- S13 ) -_ _((S11 "_- SI2 "i" S13)(C111 -- C112) lHol 2 -- __ (ell -- C12 ) J
_ [ (2s_3+_(_1_)(_¢.3_--__) c1=)]

H021 -- HOl2

1 "t- 2c44(2S13 -I- S_) + (Sll 4" S12 "l- S13)(C144 -_ ¢155) _- (2S13 "l- S33)C344Hozs ffi - 2c_

Ho_ -- HoI3

HlZZ--- [ 2c33s13 "[" (Sll -}- s12) c133 -b $13c333]2c33

H_ ffi HI_

HI_ -- _ 2czlsl2 4" S11CII 2 4" S12ClI I -_- S13Cll 3

2clz

H211 -- Him

Hs,_ --= H311
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Transverse Isotropy (Continued)

2C44S13 -_- Sii¢144 + S12CI_ '4-

Hl_ ffi -- 2c_ ]

H213 -- HI2 s

(Cll -- C12) -_- 1/4(Sli + S12)(C111 -- C112) '4" 1/2813(CI13 -- C1_)1

HI21 ----__ (ell -- c12) ]

H212 -- HI21

(C11 --C12)S13 "_" _$13(C111 -- C112) -_- _S33(¢I_ 3 -- C123)

Hsl2 = - (Cll -- C12)

H_I -- H312

H.I.:- + ],c..
H32s ---- H313

"1

[ 2C44S11 + S11Clf_ + $12C144 -[-S13C344 [
His1 [ J2c44

H_ = HI31

2c44s12 -.{- s11c144 4- s12c155 -Jr"S13C344

HI_ ffi - 2c_

H_I -- H_I
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Table 3.1 - Continued

Orthotropy

1 + 2cnS l + Sic m + $2cn2 + $3cn3
Hol I -- _

2Cll

Hot22 _ _

1 + 2c2,2S2+ S1ci_2 + $2c_2 + $3c223

2C22

1 + 2c33S3 + Slcl_ + $2c233 + $3c _Ho_ = - 2c_

Ho31 =

1 + 2cs_S I + Stclr _ + $2c _ + $3c3_

2C55

Ho32 .=- u

1 + 2c44S 2 + $1c144 + $2c244 + $3c344

2C55

Hol2 = _
1 + 2c66S 2 + Stc16 o + $2c2e 6 + $3c366

2e86

no21 _-_ _

1 + 2cssS l + $1clo 6 + S2c2se + Sac3se

2c6o

Hol 3 = _

Hoej 3 _ m

1 + 2cs8S 3 + Stcl_ + $2c2_ + $3c3_

2e55

1 + 2c44S 3 + Slc144 + $2c244 + Ssc3_

2c44

Hi33 _ _

2c33s13 + SllC133 + S12C233+ S13C333

2c33

H_ _

OC33S23 + S12C133 + S22C233 + S23C333

2C33

HI22 = -

2c.%2s12+ sHc122 + s12c2,22 + s13c223

2c22
.I

H211 -- _ 2clls12 + 812c111 + s22c112 + s23c113

2cn

where S 1 = sll + s12 + s13

S2 = sl2 + s_ + s_

and $3 = sis + s2_ + s_
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Table 3.1 - Continued

Orthotropy

H322 =

n311 -'_ --

2co_s_ + s13c1_ + s_c_z 2 + sssc_,-z3

2C22

1

2CllS13 + S13C111 + 823Ci12 + S33C113 [

J2clz

HisI = _ 2co#ll + SllClSs+ sl2c2ee+ s13czss
2css

f

| °c66s22 + S12C188 + S22C206 + $23C368
H212 [ 2c86

2C00S23 + 813C166 + S23C266 + 833C366 ]

H312 ----- -- 2Cos l
r

] 2C66S13 + S13C166 + S23C268 "4" S33C366

Ha21 [ 2cos

Hlo 3 -- -- °c44513 + SllCl44 -}- S12C244 + $13C344

- 2c44

OC55S23 + S12C156 + S2'2C255 + S23C3&5 ]

H213 = -- 2C55

r

| 2c44s33 + s13c144 + S23c244 + S33c344
H_ [ 2c_4

H313 -- _ 2c55s33 + s13c155 + $23c2,55 + $33c3,55

2c55

H131 = _ 2c55Sll + SllCl_ + Sl2C _ + s13c35,5
2c55

r

| 2C44S_ + s12c144 + s2,2c244 + s23c344
H2z2 [ 2c44

H_-_[ +sllcl..+s12c2..+sI c 4
f ]

[ 2C56S12 + S12C15.5 + S'22C2_ + $23C3,56,]
H_sl [ J2ess
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The change in "natural" velocity was measured using a pulsed phase locked loop

(P2L2) interferometer. The theory of the measurement of the change in resonant fre-

quency and it's relationship to the change in "natural" velocity was presented earlier.

Now the theory of the operation of the P2L2 which is shown in Fig. 3.1 will be dis-

cussed.

The heart of the P2L2 is a voltage controlled oscillator (VCO) which generates a

continuous wave signal of a frequency that is controlled by a D.C. input signal. A por-

tion of the signal from the VCO is gated out into a tone burst and is then used to excite

the ultrasonic transducer. The resulting elastic wave is launched into the sample and is

then detected either by the same transducer in the pulse echo mode or another trans-

ducer in the through transmission mode. The received signal is input into the P2L2

where it is phase compared with the signal from the VCO at a preselected phase point

using a sample and hold. The sampled voltage from the phase detector is then used to

drive the VCO to a condition of quadrature. The acoustic phase shift (0) given by

0 ----2_ft (3.28)

isthen maintained as a constant by the feedback loop and therefore

AO = 0 = 2_tAf + fat) (3.29)

and

A0 Af At

0 --0-- f + T" (3.30)

Thus, as stated earlier,

Af AW At
m

f W t
(3.31)

Therefore, by monitoring the change in the frequency of the P2L2, the change in

"natural" velocity is also monitored.
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Figure 3.1 - Block diagram of the pulsed phase locked loop
ultrasonic interferometer.
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A block diagram of the experimental apparatus used for the uniaxial SAC meas-

urements is shown in Fig. 3.2. The uniaxial compressive load was applied as in the

strain gauge measurements with a MTS 810 load frame. The calibrated output of the

load cell was monitored by the H.P. 3478A digital multimeter. The tone burst from the

P2L2 was used to excite a conventional damped broad band 2.25 MHz transducer.

Because broad band transducers were used, phase shifts at the transducer specimen

interface were assumed to be negligible. The P2L2 was used in a pulse echo mode with

the reflected echos input back into the instrument for phase comparison. A Tektronix

2445 oscilloscope was used to view the ultrasonic signal, the phase signal and the sample

and hold position. It was triggered by a reference sync from the P2L2. The frequency

was monitored by a I-I.P. 5316A universal counter. The voltage and frequency values

were read by a Tektronix 4051 computer and converted to stress and normalized fre-

quency shift. The program listed in Appendix G also computed the slope of the curve

by linear regression as well as plotted and stored the data.

The value for each uniaxial SAC was determined by averaging the values from

ten measurements. A spring loaded clamping device was used to maintain constant

pressure of the transducer on the specimen in order to hold the bond thickness constant

during the measurement. Variations in the bond thickness would cause phase shifts

which introduced errors into the measurement. These errors which have less effect on

thick samples made initial measurements on thin laminates impossible and placed

another constraint on minimum specimen thickness. The transducer was also rebonded

onto the specimen three or four times during the ten measurements to determine the

effect of slight variations in initial bond thicknesses. After each rebonding, the specimen

was ramped through the load cycle several times to settle the bond. Then, the sample

was allowed to remain at rest approximately 15 minutes to bring the sample to equili-

brium temperature. This was necessary because the handling of the sample during

rebonding increased the temperature slightly which could significantly affect the results.
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Another concern in these measurements was again the presence of viscoelastic

effects in these materials. The loading rate was varied considerably to examine this

effect. The specimen were loaded to between 80 and 100 MPa in times ranging from 10

sec. to over three minutes with no observed effects. The measurements were made for

both increasing and decreasing load with no measurable differences. The effect of tem-

perature variations due to thermoelastic heating was also considered. Theory assumes

these measurements to be made under isothermal conditions. At these loading rates

which were very nearly isothermal, the effect of thermoelastic heating was calculated to

be much less than experimental uncertainty. The basis of these calculations was the

temperature derivative of velocity data to be presented later.

The previously mentioned constraints on the choices of stress, propagation and

polarization directions allows for 18 measurements to be made. The average values

from the ten measurements of each and their standard deviations are presented in

Table 3.2. The uncertainties were typically less than five percent of the measured

values for these measurements. The values were consistently positive indicating increas-

ing frequency as a function of increasing compressive stress except for Hs_ and H313 . A

few of the wave modes exhibited nonlinear (quadratic) curves indicating higher than

third order nonlinear effects. These are designated by an * in the table and the SAC

values for these are the linear coefficients of a quadratic fit to the data. Typical curves

for the uniaxial SAC measurements are shown in Figs. 3.3 - 3.20.

As with the linear elastic measurements, some of these measurements can be used

to check for consistency with transversely isotropic behavior. The SAC pairs

(HI_, H211,)(Hail,Hs_) ,(Hiss,H2ss) ,(H1sl,H_) ,and (His2,H2sl)should allhave equal

values. Other pairs that should have equal values were not compared as they were

measured on differentspecimens making comparisons invalidbecause of sample to sam-

ple variations. The values of some of these pairs compare well within experimental

uncertainty. However, HIss and H2ss differ by more than the uncertainty of the
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3.2 - Measured values for the Uniaxial Stress Acoustic Coil-

Uniaxial Stress Acoustic Constants

SAC Value (GPa) -l

H_ 0.0490 +/- 0.0009

H211

Hs_

H311

H121

H212

0.0427 +/- 0.0010

0.00116 +/- 0.00007

0.00123 +/- 0.00001

0.0887 +/- 0.0007

0.0741 +/- 0.0010

H312 0.00279 +/- 0.00010

H_I 0.00299 +/- 0.00010

H_z3 0.068 +/- 0.002

n;13 0.0572 +/- 0.0010

H3_ -0.00993 +/- 0.0004

Hzls -0.00919 +/- 0.0003

H_31 0.165 -t-/- 0.003

H_ 0.149 -t-/- 0.002

H_ 0.111 -t-/- 0.002

H_I 0.109 +/- 0.001

H_ 0.0538 +/- 0.0005

H_ 0.0479 +/- 0.0003
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measurement as well as His I and H_ Thus, again measurable deviations from

transverse isotropy were demonstrated. However, why this behavior is demonstrated

only in some measurements and not in others is not clear.

The hydrostatic measurements were made in a similar fashion as those made

under uniaxial compression. A block diagram of the set up is shown in Fig. 3.21. The

change in "natural" velocity was again measured with the P2L2. Argon was used to

increase the pressure within the pressure chamber. A I-I.P. 5316A universal counter

monitored the frequency while a Tektronix 465B oscilloscope was used to view the ultra-

sonic, phase, and sample/hold signals. The Tektronix 4051 computer was used to read

the frequency data. The pressure data was manually read from a Heise C-57488 pres-

sure gauge and input into the computer.

There were several differences from the uniaxial measurements, however. While

temperature variations during the uniaxial SAC measurements were insignificant, they

were important in the hydrostatic measurements. Increasing the pressure 25 psi. sud-

denly, caused an increase in temperature of the gas and thus the sample of several

tenths of a degree C. This temperature increase was significant. Therefore, the pres-

sure had to be increased slowly and then time for thermal equilibrium to be obtained

had to be given. Typically, there was a 20 to 30 minute delay between data points.

Also, over this period of time the room temperature could vary significantly. This

caused additional problems. To overcome this, heating elements were installed in the

pressure chamber. A temperature controller was used with these heaters to maintain

the temperature several degrees C above room temperature. This speeded the time

required to attain thermal equilibrium and avoided the effect of room temperature vari-

ations provided it did not rise more than the several degree buffer. A Lake Shore Cryo-

tronics Inc. model DRC84C temperature controller was used. This instrument had a

reported ability to maintain the temperature within ÷/- 0.1 degree C. Although this

instrument drastically improved the situation, these small variations in temperature
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reduced the accuracy of the measurement significantly.

Another problem that increased the uncertainty in the hydrostatic measurements

was the limitation in pressure. The upper limit of pressure in the chamber was set at

only 250 psi. This was about a factor of 50 less than the maximum stress applied dur-

ing the uniaxial measurements. Theoretically, the slope of the SAC should be evaluated

at zero stress and thus this limitation in pressure should not be a problem. However, the

low pressure produced much smaller velocity changes making them more uncertain.

Also, the effect of temperature variations were much greater. Thus, the uncertainty of

these measurements was much larger. It was on the order of ten percent of the meas-

ured SAC for most of the hydrostatic measurements. The limitation in maximum pres-

sure also made the measurement of I-I0_ impossible because the changes involved were to

small to detect with the P2L2. The possibility of anomalous behavior at low pressures

must also be considered. Therefore, although the hydrostatically measured SAC values

were used with the uniaxial SAC measurements to determine the nonlinear moduli in

this work, measurements at higher pressures are needed to determine the validity of

these calculations.

Because of the tremendous amount of time involved in making a single hydros-

tatic SAC measurement (10 to 15 data points at 20 to 30 minutes per data point), only

three measurements were used in the calculation of each hydrostatic SAC. This also

contributed to the large uncertainty in these measurements. Measurements were again

made for increasing and decreasing pressures with no observed differences.

The hydrostatic measurements were all made using undamped crystal transduc-

ers (PZT 5A) because of size limitations within the pressure chamber. This created the

necessity of making corrections because of phase shifts at the transducer-specimen inter-

face. These phase shifts are a function of frequency and can be calculated using the

theory presented by McSkimmin [19]. The correction to the experimentally determined

normalized frequency shift assuming zero bond thickness was given by
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_F _F At

Ftrue Fexp. ttrans.
(3.3_)

AF
where _ was the true frequency change,

r tru.

____FF was the experimentally measured change,
Fexp.

At
and_

ttraa=.
was the change in time of flight due to phase shifts.

The term was given by

At
m

ttrans, to
(3.33)

where F0, Fl were the measured frequencies of two data points,

to was the time of flight in the unstressed specimen,

and "/o, "/1 were the phase angles of the two data points in degrees.

They were given by

'70 = tan-l 2ZsR°
Ro- z: (3.34)

and

_I _- tan-1
2ZsRl

- z:
(3.35)

where Z=,Zx were the mechanical impedances of the specimen and

transducer respectively,

and

R o ----Zx tan • 180 (3.36)

and
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R 1 -- Z x tan • 180 (3.37)

where FR was the resonant frequency of the transducer.

The effect of nonzero bond thickness on this correction term was also analyzed and

found to be less than experimental uncertainty.

The original and corrected values for the hydrostatic SAC's are shown in Table

3.3. Typical curves are shown in Figs. 3.22 - 3.29. Comparisons of the data to check for

transversely isotropic behavior show no measurable differences. This is most likely due

to the large uncertainty of the measurements.

The effect of temperature on the "natural" velocity was also measured for small

variations about room temperature. The apparatus used for these measurements was

the same as that used in the hydrostatic measurements. The temperature was increased

above room temperature several degrees C in 0.3 C steps using the heaters and the tem-

perature controller. The frequency was measured at each point after thermal equili-

brium was attained. Again corrections were applied to account for phase shifts at the

transducer-specimen interface. Typical curves are shown in Figs. 3.30 - 3.38. The slopes

of these curves were designated as the Thermal Acoustic Constants (HTij) and are given

in Table 3.4 where the second and third subscripts give the directions of propagation

and polarization respectively. The same samples used for the hydrostatic and uniaxial

measurements were also used for these measurements.

The curves all demonstrated linear relationships between temperature change

and normalized frequency shift for the limited range of the measurements. While these

measurements were not used in the data reduction to determine the third order elastic

coefficients, they were important in determining the effect of temperature changes on

the SAC measurements.
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Table 3.3 - Measured and corrected values for the Hydrostatic Stress

Acoustic Constants.

Hydrostatic Stress Acoustic Constants (GPa) -1

SAC Original Value Corrected Value

Hml 0.46 -t-/- 0.02 0.39 +/- 0.02

Ho_ 0.44 +/- 0.02 0.37 +/- 0.02

Ho_2 0.301 +/- 0.007 0.257 +/- 0.007

Ho_l 0.305 +/- 0.006 0.261 +/- 0.006

Ho,s 0.32 +/- 0.03 0.27 +/- 0.03

Ho23 0.32 +/- 0.02 0.27 +/- 0.02

Hosl 0.33 +/- 0.02 0.28 +/- 0.02

Hos_ 0.30 +/- 0.02 0.25 +/- 0.02

Ho_ Not Measured
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Measured and corrected values for the Thermal Acoustic

Thermal Acoustic Constants (10 --4 C -1)

TAG Original Value Corrected Value

HTU -7.58 +/- 0.02 -6.36 +/- 0.02

HT22 -7.55 +/- 0.03 -6.33 +/- 0.03

HT12 -9.9 +/- 0.1

HT2_ -9.9 +/- 0.1

HT13 -11.9 +/- 0.2

HT32 -9.0 +/- 0.7 -7.6 +/- 0.7

HT33 -0.84 +/- 0.09 -0.72 +/- 0.09

-10.2 +/- O.2

HT2S -11.8 +/- 0.2 -10.1 +/- 0.2

HT31 -8.4 +/- 0.5 -7.1 +/- 0.5
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III.D. Data Analysis

The SAC data, along with the linear moduli were used to determine some of the

third order elastic moduli for this material. Since there were more equations and data

than unknown moduli, the data was reduced by using a least squares fit to determine

the best values for the moduli. The data was fit using both the transversely isotropic

and orthotropic models. However, the lack of data for H033 prevented the calculation of

the moduli c133and c_ for the transversely isotropic model and the moduli

c1_3, c233, c33z, c1_, and c46s for the orthotropic model.

The least squares procedure for the determination of third order moduli was out-

lined by Hankey and Schuele [40]. The formulation is as follows. The measured values

for the SAC's are added to the constant terms in the equations of Table 3.1. These are

designated M i . The coefficients of the equations are designated At] and the moduli to

be determined are Dp Thus the equations of Table 3.1 are rewritten as

M i = AijD j (3.38)

where i is summed over the number of data used and j is summed over the number of

moduli to be determined. This can be rewritten as

AikM i = (AikAij)D j (3.39)

where k also runs from one to the number of coefficients to be determined. The best fit

for the moduli Dj are then given by

Dj = (AikAij)-IApkMp (3.4o)

where (AikAii) -1 is the inverse matrix element and p is summed over the number of

measured values.

If it is assumed that the error in the measured values is much greater than the

error in the coefficients, then the error in the coefficients can be dropped. The error in
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the fitted values is then given by

Z:M)i --}(AikAii)-lApklAMp (3.41)

where ADj are the maximum limits of error,

and AMp are the errors in the measured values.

The probable limit of error (AD_) is given by

, ADj

z21Dj - (N -- 1)'_
(3.42)

where N is the number of measurements.

The above stated assumption was valid in these measurements as the errors in the

measured SAC's ranged from one to ten percent while the errors in the linear coefficients

were typically less (parts in l0 s )

Programs were written to perform the data reduction for the two symmetry

models and are listed in Appendix H. The fitted values and their uncertainties are

given in Table 3.5.

III.E. Conclusion

Using a pulsed phase locked loop interferometer, the normalized change in the

ultrasonic "natural" phase velocity as a function of both stress and temperature have

been measured. The stress measurements were made under conditions of hydrostatic

and uniaxial stress. The measured curves were predominantly linear although several

were nonlinear (quadratic) indicating higher than third order nonlinear elastic effects.

Because of equipment limitations, the hydrostatic measurements were made at much

lower pressures in comparison to the uniaxial measurements. Thus the uncertainties of

the hydrostatic measurements were much larger making the validity of using them with

the uniaxial measurements to calculate the third order moduli questionable. This
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Table 3.5 - Calculated values of third order elastic stiffness moduli for

transversely isotropic and orthotropic symmetries.

Third Order Elastic Moduli

Transverse Isotropy

Modulus Value (GPa) Max. Error Probable Error

c m -214 17 4

cn2 -89 12 3

clt 3 -4 110 23

c123 65 109 23

c144 -33.4 3 0.5

cl_ -49.1 4 0.8

c344 -47 30 6

Orthotropy

c_ l -196 15 3

clt 2 -94 5 1

ctl3 -63 63 13

ci_ -91 8 2
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Table 3.5 - Continued

Modulus

Orthotropic Nonlinear Moduli (Continued)

Value Max. Error Probable Error

c166 -33.9

c266 -33.1

c_e -28.5

0.6 0.1

0.6 0.1

4.0 0.8

c_ -186 21 4

c,2,_ -60 93 19

c144 -33.0 2.4 0.5

c244 -47.8 3.3 0.7

c_4 -46 27 6

ci_ -50.I 3.9 0.8

c2_ -33.5 2.8 0.6

c_ -49 32 7
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limitation in maximum hydrostatic pressure also prevented the measurement of H033

which prevented the calculation of several of the nonlinear moduli. The hydrostatic

measurements need to be evaluated at higher pressures to reduce the uncertainties and

to evaluate Ho,_ • This would enable the determination of the remaining third order

moduli.

The effect of temperature changes on "natural" velocity was also evaluated for

nine combinations of propagation and polarization directions. These measurements

were made over a narrow range of temperature change slightly above room tempera-

ture. The curves all demonstrated linear relationships between velocity and tempera-

ture. Although not directly used for the evaluation of third order moduli, these meas-

urements were important in the evaluation of the effects of temperature variations dur-

ing the SAC measurements.

The SAC values and the second order moduli were used to calculate some of the

third order elastic moduli. A least squares fit was applied for both the transversely iso-

tropic and the orthotropic models of elastic symmetry. The values for these moduli

were all negative with the exception of the cl2_ • This is in agreement with the non-

linear behavior of conventional materials. Although the linear elastic moduli and the

SAC data demonstrated small deviations from transverse isotropy, large uncertainties in

the third order moduli masked any such deviations. The orthotropic moduli agree

within experimental error to the conditions of transverse isotropy.
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IV. SUMMARY AND CONCLUSIONS

The mechanical behavior of a unidirectionalT300/5208 graphite/epoxy compo-

site material has been evaluated in this research. In particular,the linear (second

order) and nonlinear (thirdorder) elasticproperties have been measured. The linear

moduli were measured by ultrasonicvelocitymeasurements as well as by staticloading

strain gauge measurements. The nonlinear moduli were calculated from the linear

moduli and measurements of the change in ultrasonic "natural" phase velocity as a

function of stress.

The measured linear elasticproperties of this material agreed well with previ-

ously reported values for a similar material except for the moduli c33and s33 • These

were the moduli that reveal the behavior of the composite under loading along the fiber

direction. The low value for c_ and corresponding high value for s_ may have been a

resultof a lower fibercontent or higher void content in thismaterial. Itcould also have

been the effectof misalignment of fibersin some of the laminae. However, the values of

the ultrasonic and static measurements compared well with the exception of the off

diagonal modulus c13 . This discrepancy was probably the resultof eitherlarge uncer-

taintiesof the staticmeasurements or error propagation in the inversion of the ultra-

sonic moduli. These measurements also pointed out measurable deviations from

transverselyisotropicelasticbehavior which isusually assumed for unidirectionalcom-

posites. The material more correctlypossessed orthotropicsymmetry although the devi-

ations from transverse isotropywere small.

The change in ultrasonic"natural" velocityas a function of stressand tempera-

ture was measured with a pulsed phase locked loop ultrasonic interferometer for

numerous wave modes. These measurements again demonstrated deviations from

transverselyisotropicbehavior. Also, some of the stress-velocitycurves were nonlinear

(quadratic) which indicated higher than third order nonlinear effects. The
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temperature-velocity curves were all linearover the small range of the measurements.

Some of the third order elasticstiffnessmoduli were calculated from the stressdepen-

dence of velocity.These were allnegative in agreement with nonlinear propertiesof con-

ventional materials.The uncertaintiesof some of these moduli were large as a resultof

the large uncertainties of the hydrostatic pressure measurements propagating in the

least squares data reduction. These large uncertainties masked any deviations from

transverse isotropy that might have been present.

However, itshould be noted here that the measured SAC's are probably more use-

ful than the calculated nonlinear moduli. This isbecause they are more easilyobtained

with smaller experimental uncertainty and can be measured in an individualspecimen

instead of calculated from measurements made in severalspecimens. Also, the SAC's are

the quantitiesthat are more useful in experimental attempts to measure applied and

residual stressand may be important in nondestructive evaluation of ultimate strength

of materials.

Itwould be remiss to failto point out several factorsthat could be improved to

yield better measurements. First,the hydrostatic measurements should be carried out

to higher pressures with improved temperature controller capabilities. This would

reduce the uncertaintiesof these measurements and thus those of the nonlinear moduli.

Also, the effectof sample to sample variationson both the linearand nonlinear proper-

tiesneeds to be evaluated further. These measurements were made on as few samples

as possible to reduce this effectin the calculations. Future measurements should also

evaluate the changes in velocity over wider temperature variations and with much

higher stresses(i.e.near ultimate strength stresses)as well as evaluate the nonlinear

propertiesby other techniques such as harmonic generation.

Although the primary goal of thisinvestigationwas a more thorough characteri-

zation of the mechanical propertiesof graphite/epoxy composites, these measurements

serve as a basis for further study and potential applications in the area of
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nondestructive testing of these materials. Also, the effects of fiber volume ratio and

more complex lay up orientations on nonlinear properties of composites need to be

evaluated. The relationships between nonlinear properties and important engineering

properties such as strength , residual strength after impact and fatigue loading, and

fiber-matrix interracial strength need to bestudied. These may lead to the development

of needed nondestructive evaluation techniques for composite materials which will play

an important role in the future of the aerospace industry.

The problem or residual strain in composites which arises because of the

mismatch of coefficients of thermal expansion between fiber and matrix is another

potential application for these measurements. When the composite material is cooled

from the higher temperatures of polymerization during cure, large strains develop which

may degrade the ultimate strength of the material. Although special curing cycles have

been developed to reduce this effect, it still remains as an important problem in the field

of composites. And as nonlinear ultrasonics have been used in attempts to nondestruc-

tively evaluate residual strains in conventional materials, they may well be useful in the

measurement of residual stains in composites. Especially, since it may be possible to

characterize the elastic symmetry of the composite better than in conventional materi-

als because the symmetry of the material is determined by the lay up orientation. In

conventional materials the problems associated with anisotropic textures of the material

have limited the applicability of this technique.
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APPENDIX A

The derivation of the independent linear (second order) elastic moduli for the

symmetries of transverse isotropy and orthotropy are now presented. The case of ortho-

tropic elastic symmetry is presented first. In an orthotropic material, there are three

orthogonal planes of two fold symmetry. Therefore if the three coordinate axes are

chosen such that they are the normals to these planes, then the independent elastic

moduli can be determined by applying the two fold rotations about each of these axes

on the strain energy function. The strain energy function is initially given by

= 1---(C11E12 -_ C22 E2 -_ C33E32 -_- C44_42 -_- C55 E2 + C66E2) -[- Cl2E1E2

-_-C13E1_3 --[-C14EIE4 -'{-C15E165 -it-C166166 -_t-C236263 -+-C246264 "+'C2562£5

-_-C26E2E 6 -}-C34E3E4 -_LC35E3E 5 -bC36E3E 6 -bc45_4E5 -}-C466466 "-}-C56_5E6. (A.I)

The effect of a 180 degree rotation about the x2 axis is now considered.

matrix of transformation is given by

0;1][aijl = I
0

(A.2)

The

The effect on this rotation on the strains is given by

!

_ij = aimajn£mn (A.3)

which yields the following relations between the rotated and original strains expressed

in the Voigt reduced notation

!

61 _ E1

I

E2 _ E2
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/

£3 _--- £3

/

E4 _-_ _E 4

]

£5 _--" E5

/

E6 = _E6

(A.4)

The strain energy function can be written for the rotated state and the above equations

substituted to yield

_,= 1, c2 c22c2 c33e32 c44_2 c55e _ c66e_)_t -_tcll 1 + + + + + cl_cle_

JC-Cl3E1E3 -- C14£1E 4 "_C15£1E5 _Cl6E1E6-_" C23E2E3-- C24E2E4 JC'C25E2£5

--C26£2E6--C34£3E 4 JRC35£3£5 --C36£3£6 --C45E4£5 --_-C46E4£6--C56£5£6. (A.5)

Equating • and _' term by term with respect to strain yields the following

c14 = --c14

c16 = _c16

c24 = _c24

c26=--c26

c34 = _c34

c36 ---_ --c36

C45 "_C45

C56 _-_C56

(A.6)

For these relations to be true, then

c14 _ c16 = c24 = c26 ---_ c34 = c36 = c45 = c56 = O. (A.7)

The matrix of elastic stiffness moduli is then given by
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CAB

ell c12 c13 0 c15 0

c12 c22 c23 0 c25 0

c13 c23 c33 0 c35 0

0 0 0 c44 0 c4e

cls c25 css 0 css 0

0 0 0 c4e 0 tee

(A.7)

The strain energy function is now given by

2(Cl1612 -_- c2262 -_- c33 _- 62 Jr" E2 -4- C55652 "}"E2) J¢- C126162

C1361£3 • C156165 "Jr C23£263 _ C256265 _ C356365 _ C466466 . (A.8)

The effect of a 180 degree rotation about the x I axis can now be considered. The

transformation matrix is given by

 00j[uij] = --1 0

0 --1

(A.9)

The rotated and original strains are related by

I

E1 _ E1

I

E2 _ E2
!

63 _ 63
I

64 = 64

I

65 _ --65
I

66 _ --6 6

(A.IO)

Again these are substituted into the equation for the strain energy function resulting in

4)'--
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"_-C13_1_3 --C15£1_5 -_'C23_2_3--C25_2_ 5 -- C35_3_5 -- c46_4£ 6.

Equating term by term yields

C15 _ C25 _ C35 _ C46 _ 0

and reduces the elastic stiffness matrix to

(A.U)

(A.12)

CAB

ell C12 C13 0 0 0

C12 C22 C23 0 0 0

C13 C23 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 css 0

0 0 0 0 0 c66

(A.13)

The third symmetry rotation about x3 can be shown to have no further effecton the

elasticstiffnesstensor and thus the finalform for an orthotropicbody isgiven by equa-

tion A.13. There are nine independent moduli for an orthtropicmaterial.

The reduction of moduli for a transverselyisotropicmaterial can be carriedout

beginning with the matrix form for orthotropy. This isbecause it possessesthe same

symmetry conditions as an orthotropicmaterial in addition to having an isotropicplane

perpendicular to x3 . Thus the strainenergy function can be written out with the ortho-

tropic moduli and the effectof an arbitrary rotation around the x3 axis can be con-

sidered. • isgiven by

1

= + + + + + c68  )

"_-C12_1_2 _-C13_1_ 3 "_'C23£2£3 • (A.14)

The effectof an arbitraryrotation around x8 by an angle 8 on the strainsisgiven by
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!

_1 = COS2_{_1 + sin6cos8% + sin2O%

t

e2 = sin2OQ + sinOc°sOe6 + c°s2_%

!

e 4 = --sin/_% + cos_£ 4 (A.15)

!

% -----cos_ s -- sinO_ 4

I

% = --2sin_cosSQ + (cos28 -- sin28)% + 2sin/_cos/_%.

These equations can be substituted into the strain energy function as before. Then corn-

paring ¢ and ¢' term by term will yield

ell _ c22

c13 _- c23

c44 = c55

1

C66 ffi --_-(Cll -- C12 )

(A.lS)

which reduces the number of independent elastic moduli to five for a transversely isotro-

pic body. The elastic stiffness matrix can be written out as

Cll C12 C13 0 0 0

C12 Cll C13 0 0 0

C13 C13 c33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C44 0

1
0 0 0 0 0 --(c11-c121

2"

[CAB ] _-_ (A.17)
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APPENDIX B

Using the equations derived for linear elasticwave propagation presented in

Chapter If.,the expressions for the velocitiesof ultrasonic waves in terms of elastic

moduli and density are now derived. The expressionsare derived for both transverse

isotropy and orthotropy. The case of transversely isotropicelasticsymmetry is con-

sideredfirst.

For the case of transverse isotropy,equation (2.84)can be used to show that

there are several directionsof propagation for pure mode elasticwaves. Pure mode

elasticwaves may be propagated along the x3 axis and along any directionperpendicu-

lar to the x3 axis in the isotropicplane which of course includes the xIand xs axes.

They may also be propagated in a directionwhich makes an angle O with the x3 axis

given by

_I

tall 0 = l C13 4" 2C44 -- C33'F. (B.I)

c13 -_- 2C44 -- C11 J

However, for unidirectionalgraphite epoxy composites where the modulus c_ isusually

about two orders of magnitude larger than the other moduli, this direction does not

exist. Thus the pure mode directionsto be considered are along each of the three coor-

dinate axes.

The components of the matrix )_ikfor a transverselyisotropicmaterial are given

by

1

_11 = C11112"_-2-(Cll -- C12)12 -_ C4412,

1

X22 = _(ClI -- CI2)I2 -_-cul _ + C4412,

= + + (8.2)
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1

_k12 ffi _k21 ffi _'(Cll "_- el2)lll2,

_13 = _31 = (C13 + C44)1113,

and

)_23 ----_)_32 --'_ (C44 + C13)1213"

The solutions for the wave modes propagating along the x I axis are now derived. For

waves propagating in this direction, the direction cosines of the wave normal are given

by 11 ffi 1, and 12 = Is -- 0. The components of the ),_ matrix reduce to

_kll --._ Cll ,

1

)k22 -- 2(Cll -- C12), (B.3)

_3,3 _ C44,

and all other Xij -- 0 . These are substituted into equation (2.55) to determine the solu-

tionsfor the three modes of propagation in thisdirectionby solvingthe equation

DET

C11 -- POv2 0 0 .

1
0 "_(CII -- C12 ) -- po V2 0

0 0 C44 -- p0 V2

---- 0. (B.4)

This can be expanded to

(Cll -- PoV2)(X(cll --C12 ) -- P0V2)(C44 -- po ¥2) ---_ 0. (B.5)

The solutionsare then found to be

v I

I
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Cll _ C122Po
(B.8)

and

v 3 ----

Solving for the eigenvectors for each of these eigenvalues yields the following particle

displacements. For the first wave, the direction cosines of the particle displacements are

a 2 ffi a 3 -- 0 and a I = 1 . Therefore, since a i -- 1i , the first wave is a pure mode longitu-

dinal wave. For the second wave, the direction cosines are a I = a s -- 0 and a 2 -- 1 .

Thus, since ail i --- 0 , it is a pure mode transverse wave. The particle displacement vec-

tor direction cosines for the third wave are found to be a I - a 2 = 0 and a s ffi 1 , which

means it too is a pure mode shear wave. The energy flux equations can be used to show

that there is no energy flux deviation for these waves.

The solutions for propagation along the x2 axis are similar. The direction cosines

of the wave normal are Il = 13 -- 0, and 12 = 1 . The Xti components are then

1

_11 -- 2 (CI1 -- C12)'

_:2 = c11, (B.8)

_33 _ C44,

and all other Xti ffi 0 . The solutions for these wave modes are of course the same as for

propagation along xl except the first and second waves are reversed. Waves propagat-

ing in any direction in the xl, x 2 plane with 1s -- 0 can be shown to have similar solu-

tions to the waves propagating along x I and x2 .

Propagation along x s where 11 ffi 12= 0, and Is = 1 is now considered. The corn-

ponents of )_ti are now given by
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_11 _-"_C44,

_'22 : C44,

_33 : C33,

and all other kij = 0 . Substitution into equation (2.55) yields

(C44 -- P0V2)2(C33 -- p0 V2) = 0.

The solutions for this equation are given by

1

v 1 = V2 _--_ [C44_,

tPo)
(B.9)

(B.7)

(B.8)

and,

v 3 =
c33

70)

Solutions for the particle displacements for these wave modes show that for the first and

second wave modes, a s -- 0 while al and a s are arbitrary as long as a_ + _ -- 1 . Thus

these waves are pure mode shear waves with particle displacements in the xl, x 2 plane.

For the third wave, they are a I ffi as ffi 0, and a s = 1 , which means it is a pure mode

compressional wave. Again, it can be shown that these waves suffer no energy flux devi-

ation.

Measurements of the velocities of the waves in these three directions can be used

to determine four of the five independent elastic stiffness moduli. However, the modulus

cls can not be determined. To evaluate this modulus, an off axis non-pure mode wave

must be used. The wave chosen for this purpose was a wave propagating in the xl, xs

1
plane 45 degrees between the two axes. Thus, 11= ls -- -_, and 12 = 0 . The com-

ponents of the kii matrix are then
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1

_klI = "_-(C11 -_- C44),

1 1

)_22 -- 9. (C44 "_" "2"(Cll --C12)),

1

_'33 -- 2 (C33 "_- c44)'

1
_k13 -_- --(C13 + C44 ),

2

(B.IO)

and allother Xii= 0 . These are substitutedinto the eigenvalue equation and the solu-

tions are given by

P°V_ ----4 II -_"2C44 -_-C33 "3I" _/(Cll -- C33)2 'Jr- 4(C,3 "3t- C44) 2}

(B.11)

and

]P°v32 = 4 11 "Jr"2C44 'nt" C33 -- 'V'(Cll -- C33) 2 "Jr- 4(C13 "4- C44) 2 •

Solutions for the particle displacements of these waves show that the second wave is a

pure mode shear wave. However, the first wave is a quasilongitudinal wave and the

third wave is quasishear. Energy flux equations show that these wave modes also suffer

energy flux deviation. Kriz and Stincheomb [45] reported the energy flux deviation

could be as high as 43.4 degrees for the quasilongitudinal wave and 28.7 degrees for the

quasitransverse wave. The energy flux deviation was reported to be about 17.8 degrees

for the pure mode transverse wave. Waves propagating in the x2, x s plane 45 degrees

between the axes with 11 ffi 0 have the same solutions.

The solutions for the wave modes in an orthotropic medium will now be derived.

The k_ matrix components are now given by
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_kll = C11112 -I" C6612 + csslz2,

X22 ffi c66112 + c22122 + c44132,

_33 ffi c5512 + c4412 "[- C33132'

_K12 = _K21 = (C12 '+ C66)1112, (B.12)

)k13 _-_ )k31 = (C55 + c13)1113,

and

X2 3 _-_ X3 2 m (C44 + c23)1213.

For propagation along the x t axis, these equations reduce to

)kll _ Cll ,

X2 2 _c66, (B.13)

)k33 _ C55 ,

and all other components are zero. When these are substituted into equation (2.55), the

v 1

v 2 ----

wave solutions can be found to be

Cll _'_,

Po J

c66 _,

;o ]

(B.14)

and

v 3 _-_
c55
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with the first wave being a pure mode longitudinal wave. The second wave is a pure

mode shear wave with particle displacements along the x 2 axis and the third wave is

pure mode shear polarized along the xs axis. There is no energy flux deviation for these

waves.

For propagation along x2, the components of kij reduce to

_kll_ C66,

)x22 = c22, (B.15)

_k33 _ c44 ,

and all other )_ = 0 . When substituted, these yield the equation

(C66 -- PoV2)(C22 -- PoV2)(C44 -- ,00V2) = 0 (B.16)

which has the solutions

tPoJ

1

V2 _-_- /C22_, (B.17)

tP0J

and

v 3 _---

In this case, the first and third waves turn out to be pure mode shear waves polarized

along the xl and x3 axes respectively while the second wave is a pure mode compres-

sional wave. Again, there is no energy flux deviation for these waves.
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Now the case of wave propagation along the xs axis in an orthotropic material

is presented. With Il -- 12 -- 0, and 13 = 1 , the components of Xij reduce to

_II _ C55,

k22 _-_C44 , (B.18)

_33 _ C33,

and all other _ij components equal to zero. These yield the solutions for the three modes

1

v 1 _ /c55_,

[poJ
1

V2-- /C44_ _, (B.19)

tPoJ

of propagation as

and

v 3 _-

In this case, the first and second waves are pure mode shear waves. The first wave is

polarized along the x I axis. The particle displacements for the second wave are along

the x2 axis. The third wave is a pure mode compressional wave. There is no energy flux

deviation for these waves.

As with the case of transverse isotropy, the pure mode waves do not yield

sufficient data to determine all of the orthotropic moduli. Waves must be propagated

off axis to determine the moduli c12, Clz, and c_. Waves propagating in the xl, x2 plane

45 degrees from each axis with l_ = 0 are considered first. The direction cosines of the

1
wave normal are given by 11 = 12 = -:_, and 1z = 0 . Thus the Xij matrix components
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1

_11 = E(C11 + C66)'

I .,

X22= _(cs8+ c22),

1

X33 = T(C55 "_- C44),

1 C
_12 = _21 = T( 12 + C66),

(]3.20)

and allother ki}= 0 . The solutionsfor the waves propagating along thisdirectioncan

then be determined to be

P0v12 = T 11 + 2C66 + C22 + "_/(Cll -- C22) 2 + 4(C12 + C66) 2

1

po_ = E(_ + c551, (B.21)

and

pov_=4 li÷2css+ c_ - _/(cl, - c_)2+ 4(c,_+ c6_)2].

The second wave is a pure mode shear wave while the first is quasilongitudinal and the

third is a quasishear wave. The energy flux deviation for these waves is small because

there is only a small deviation from isotropy in this plane.

The next off axis direction considered is that in the xl, x3 plane 45 degrees from

either axis where the direction cosines for the wave normal are given by

1
1lffil sf-:_,andl 3=0. Therefore,

1

)Xll_'_ E(Cll "4- C55),
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1

_k22 _ "_(C66 -4- C44),

1

X33= _(css + c33),

1

>',a= Xa,- 2(Cla+ css),

(B.22)

and all other Xij = 0 . The solutions for these waves are then found by solving the equa-

tion

(x22- p0v2)[(×,,- p0v_)(×33- poV2)- ×_3]= o. (B.23)

The three roots of this equation are given by

P0V_ = + 2css + c33 + _p/(cll -- c33) 2 + 4(c13 + Css) 2

1

poV_= -_(c44+ %6), (B.24)

and

PoV2 ---- 71 [cll + 2c55 + c33 -'V'(Cll- c33)2 + 4(c13 + c55)2]

The first and third waves are quasilongitudinal and quasishear mode waves respectively

while the second is pure mode shear. The energy flux deviations are again large as was

the case for the similar waves for transverse isotropy.

The final direction of propagation considered is that in the x2, Xs plane 45

This is similar to the previous case with the final solutionsdegrees from either axis.

reducing to

1
1

po_ = T(cs_+ c6_), (B.25)
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and

P°v2---- 4 22 + 2c44"+" e33 -- '_/(C22 -- C33) 2 + 4(e23 + e44)2].

Again, the second wave is pure mode shear while the first is quasilongitudinal and the

third is quasishear. These equations reduce to those given for transverse isotropy if the

appropriate substitutions are made. These equations allow the determination of all of

the second order moduli for an orthotropic material.
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APPENDIX C

The relationshipbetween the measured time between echos (t)and the true time

of flight(5)was given by McSkimmin [19]as

t _ p_ - 360F

In this equation, p is an integerexpressing the differencebetween the number of echos

used for the overlap measurement. Since the firstand second echos were used for these

measurements, it was always true that p = 1 . The variable n in this expression isan

integerwhich gives the number of cyclesof incorrectoverlap between the two echos. If

the echos are overlapped correctly,then n = 0 . Ifthe second echo isoverlapped one

cycle before the firstthen n = -1 and ifthe reverse istrue then n ffi1 . "/isthe phase

angle (in degrees) accounting for phase shiftsat the transducer-specimen interface. F is

the frequency of the tone burst and not the repetitionrate frequency.

Substitutingthe fact that p = 1 simplifiesthisequation to

t _ "7 + "

Thus both _/and n _nust be determined t'o evaluate the true round trip time. Therefore

a second equation isintroduced which is

"71 1 -- 3--_1 --3_ -- (c.3)

This equation expresses the change in measured time between echos as a function of a

change in the frequency of the pulse from a higher frequency (Fh) to a lower frequency

(Fl) . The phase shifts at these two frequencies are designated _/h and _l • For these

measurements F h was chosen to be that of the resonant frequency of the transducer and

F l was chosen to be 0.9 times that value. Thus, this equation can be rewritten as
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' -
/%t- O._F r

(C.4)

where F r is the resonant frequency of the transducer.

The phase angles "/l and % can now be calculated from standard electrical

transmission line theory. It is defined that Zt, Z2, and Z 3 are the mechanical impedances

of the transducer, bond material, and sample respectively. Z 4 is the mechanical

impedance of the transducer-bond composite resonator and it is defined that

Z_
r - (c.5)

Zl

Therefore,

Z4 = iZ2 /

r tan k212 + tan kll 1

r -- tan kll I tan k212
(c.6)

where 11, 12 are the thicknesses of the transducer and bond respectively,

and kl, k 2 are the wave numbers for the transducer and bond given by

w 2_"
k i -- -- (C.Z)

vi _'i

where vl are the respective velocities of sound in the transducer and bond

and )u are the wavelengths of sound in the transducer and bond.

Now it is assumed that the bond thickness is zero, and thus equation (C.6) can be

reduced to

Z 4 = iZ 1 tan kll 1. (c.s)

Since at the resonant frequency of the transducer,

el
F r --

211 '
(c.o)

it is true that
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kll I -- 180 degrees. ((3.10)

At Fx,

kll 1 -- (0.9 • 180) degrees. (C.11)

Therefore at F r ,

(C.12)

and at F I ,

Z 4 = iZ 1 tan (0.9 • 180) (C.13)

For an elastic wave reflecting from the transducer-specimen interface, the ratio

of the reflected pressure (Pr) to the incident pressure of the wave (Pi) is given by

Pr Z4 -- Z3
m

Pi Z4 + Z3
((3.14)

and the phase angle is given by

tan _/--

Re Pr

(C.15)

At F = F r ,

Pr

Pi

0 -- Z 3

0+Z 3
----1

and therefore

_/r ---- tan-1 0 = O. (C.17)

At F = Fl,
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Pr iR4 - Z3
m

Pi JR4 + Z3
(c.18)

where R4 = Zl tan (0.9 • 180) .

Thus "h can be calculated to be

2Z3R 4 ]_fl = tan-1 ' _---2 " (C.18)
R 4 -- Z 3

Therefore 71 can be calculated from knowledge of the mechanical properties of the sam-

ple and the transducer.

Since % = 0 , the equation for the change in measured time of flight as a func-

tion of frequency can be reduced to

At(0 ) ffi (0.111n -- 71/324)
Fr (C.19)

where the superscript (0) implies that this equation is true for zero bond thickness.

If n = 0, this equation reduces to

At(0,0 ) = "71
324F r (C.20)

where the second superscript 0 implies that n = 0.

If measurements are made at F r and FI for a number of different overlap numbers

(n) and the Atls calculated for each n, the correct choice of n = 0 can be determined by

comparing the experimental results with those predicted by the previous equation. The

agreement will not be exact, but the one closest to the calculated value of At (°'°) and

obeying the stipulation that

/ktmeasured > At (°'°) (C.21)

which implies a positive bond thickness will be the correct choice for proper overlap.

This theory can be extended to account for nonzero bond thickness. However, the
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corrections were determined to be less than experimental error for these measurements.



100 REM

!10 REM

120 REM

15e REM

160 REM

170 REM

!90 REM

19e RE_

200 RE_

2!0 REM

220 REM

_ REM

250 REM

257 _E_

25E F_EM

_=_ REM

26i REM

2_2 REM

_ REM

264 REM

_L= REM

266 REM

_L_ REM

268 REM

270 REM

280 REM

290 REM

300 REM

3!0 REM

320 REM

330 REM

340 REM

350 DIM

360 REM

370 REM

380 REM

390 REM
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APPENDIX D

PROGRAMTO COLLECTAND ANALYZEDATA FROM PULSEECHO

OVERLAPULTRASONICTECHNIQUE. WRITTENBY PROSSER

9125185.

variable!ist

,a__au_e

f$

x$

b$

s$

d$

ml

m2

T3

T2

F2

j:
F_

Z

CI

P(1),Q(_)

S(Z),R(1)
D(!)

U(1)

W,X

t

fl

I,K

l(i,k}

h(i,k)

description type
name of file character(32)

transducermaterial " ,_2)

bond material " (32)

sam e ,u ,.._,

date data taken " (20i
w &_a,a pts/overlap numeric
seriesformatof ml "

AV_. EXP. TRANSITTIME "

AVG. EXP. DELTAT(B) '

TRANSITTIME,CORR.DELTAT "
_DUCERRES.FREQ. IN HZ '

,QMAX,

DATA FILE NO.

FILE LENGTHCOUNTER

FREQ. DIVISIONBY MATEC 110 '

AVG. DELTAT AT RES.,LOWFREQ. '

ST. DEV. OF TIME AT RES.,LOWFREQ. '
DELTAT'S

UNCERTAINTIESIN DELTAT

T, _' _' ISUM ,OTALR_ FOR AVG.'S

sampletemp.

xducerresonantfreq. "

INTEGERLOOP COUNTERS '

data at low freq. (.gfl)"

data at res. freq.

charactervariabledimensioning

filenamingand variables

400 PRINT "whatis the name of the file?"

410 INPUTF$

_20 PRINT "whatis the sampleID?'

430 INPUTS$

44_ PRINT "whatis the xducermaterial?"

450 INPUTX$

460 PRINT 'whatis the bond material?'

470 INPUTB$

480 PRINT "whatwas the date data was taken?'

490 INPUTD$

ORIGINAL PA_3E I$

OF POOR QUALITY



5@0
51g
520
53B

.54B
550
566
57B
58O
59g
606
610
620
b3g
640
658
668
670
688
691
76O
716
720
738
740
756
760
770
790
808
816
820
B30
848
850
B6g
B7g
88g
890
966

918

929

929

?3g

9_I

932

933

934
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PRINT

INPUT

PRINT

INPUT

PRINT

PRINT

PRINT

PRINT

PRINT

INPUT

PRINT

INPUT

PRINT

PRINT

PRINT

PRINT

"whatwas the temp.of the samplein deg. C?"

T

'whatwas the xducerresonantfreq. in MHz?'

Fl

"whatwas :QMAX:?'

"= max. # of apparentechos in frontof'

'or behindthe referenceburst'

'(ref.burst is takento be the "

'largeramplitudeburst)'

Jl

"whatis the # of data pts per overlap"

MI

'if seriesformatof ml was 1:2:3:4...'

'theninputI'

"if seriesformatof m2 was 1:2:4:B...'

'theninput__"

INPUTM2

IF M2=I THEN 710

I_ M2=2 THEN 710

PRINT 'expectinginputof I or 2'

GO TO 620

?35

946

941

942

943

751]

REM

REM

REM

REM

REH

REM

REM

REM

REM

descriptionof echo-overlapdata

organization;each data set has 2

arrays (ifor res. freq. and I for .9tresfreq.)

each with (2eIQHAX:+l}Imldatapoints.

a finaldata set containsxducermaterial,

bond material,temp.,etc.

dimensioningarrays

LET l=2*(Jl+l)-i

LET K=MI

DIM H(I,K),P(1),Q(Ii,F(1)

DIM L(I,K),R(I},S(Ii,D(I},U(1),E(1)

REM

REM inputdata

FOR K=I TO Ml

PRINT "INPUTFREQ.DIVISIONFACTORFROM MATEC 110'

INPUTCI

FOR I=l TO 21(JI+[)-I

PRINT"freq.= resonantfreq.'

Z=l-(Jl+l)

PRINT 'PRESSRETURNTO'

PRINT'enterarray member';Z,K

PRINT "INPUTYES TO CHANGEFREQ.DIVISIONFACTORFROM: ';CI

INPUTAS

IF AI<>'YE5'THEN 94B

PRINT 'INPUTNEW FREQ.DIVISIONFACTOR"

INPUTCI

INPUT@2B:H(I,K)

H(I,K)=H(I,K)/IgACI

PRINTH(I,K)

PRINT" '

NEXT I
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960 NEXT K

970 FOR K=I TO MI

971 PRINT "INPUTFREQ.DIVISIONFACTORFROM MATEC i!0'

972 INPUTCI

980 FOR 1:i TO 2.(JI+I)-1

990 PRINT 'freq.= .gires.freq,'

1000 Z=I-(_I+I)

1009 PRINT _PRESS RETURNTO '

1010 PRINT "enterarraymember";Z,K

1011PRINT "INPUTYES TO CHANGEFREQ.DIVISIONFACTORFROM:";Ct

1012 INPUTAS

fB13 IF A$<>'YES'THEN 1020

10!4PRINT "INPUTNEW FREQ.DIVISIONFACTOR'

1015 INPUTCI

1020 INPUT020:L(I,K)

1021L{I,K)=L(I,Kl/10"CI

1022 PRINTL(!,K)
1023PRINT _ '

1030 NEXT I

1040NEXT K

!050 REM COMPUTEAVB.'SAND ST. DEV.'S

1060 REM

1070 FOR I=I TO 2.(JI+I}-I

1080 W=B

1090 X=0

1100 FOR K=I TO MI

1110 IF M2<>I THEN 1140

1120 W=W+K/H(I,K)

1130 GO TO 1160

1140 Z=2"(K-1)

1150W=W+Z/H(I,K}

1160 NEXT K

1170P(1)=WIMI

1180 FOR K=I TO MI

1190 IF M2<>ITHEN 1220

1200 X=X+(K/H(I,KI-P(1))*2
121080 TO 1240

1220 Z=2_(K-I)

1230 X=X+(Z/H(I,K}-P(1))_2
1240 NEXT K

1250S(1)=(X/MI}^O.5

1260NEXT I

1270FOR I=I TO 2'(JI+!)-I

1280W=O

1290 X=O

1300 FOR K=I TO MI

1310 IF M2<>ITHEN 1340

1320W=W+K/L(I_K)
1330GO TO 1360

1340 Z=2^(K-I)

1350W=W+Z/L(I,K)

1360NEXT K

DR'IGIF/_CALP_'%GE I_
OF Po,-):,-,..........
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1370 Q(i)=W/MI

1380 FOR K=I TO MI

1390 IF M2<>ITHEN 1420

1400 X=X+(K/L(I,K)-Q(1))"2

1410GO TO 1440

1420Z=2"(K-i)
T " - T _ ._01430 X=X+(Z/L(,,K)O(,,)

1440 NEXT K

!458R(I)=(X/MI)"0.5

1460NEXT I

1470REM

!480REM CALCULATESn ,T_E_.AT AND UNCERTAINTIESIN DELTAT

1490REM

1500REM

1510FOR I=I TO 2.(JI+1)-I

1520 D(1)=_(1)-P(1)

153@U(1)=S(!)+R(1)
I¢_j40 NEXT I

1550REM

!56@REM CALCULATESDELTAT(@}

1570 REM

1580PRINT "WHATIS THE IMPEDANCE(*IE5MECH.OHMS)OF"

1590 PRINT 'THE";X$;"TRANSDUCER?'

1600 INPUTZ!

1610PRINT "WHAT IS THE IMPEDANCE('IE5MECH.OHMS) OF SAMPLE';SI

1620 INPUTZ3

1630PRINT "WHAT I.STHE IMPEDANCE(,IE5MECH.OHMS) OF THE ";B$;"BOND"

1640 INPUT7_

165@ Z4=ZI*TAN(O.9*Pi)

1660 6¢ATN(2*Z4*Z3/(Z4_2-Z3"2))

1661 IF G>@ THEN 1670

1662 G=G+PI

1670F2=FI*1000000

1680 01=-I/(2*Pi*F2)*(G/0.9}

1690REM
_C TI"' r _T1700REM IE_N_,r__ORRE_,N AND FINDDELTA T(O) FROM EXP. DATA

,,,0 REM

1720 REM

1730 PRINT'COMPARETHE CALCULATEDDELTAT(O) = ";nl;'rc_r _.

1740PRINT 'WITHTHE FOLLOWINGVALUES'

1750 PRINT"'

1760FOR I=I TO 2,(JI+I)-I

177@ PRINT"_"" (' . ' ,'_::_AT ;I-(Jl+l);')= ;D(1); (SEC.)'

!780PRINT "
1790 NEXT I

!B00PRINT "ENTERTHE # OF DELTAT THATMOST CLOSELYMATCHESTHE_

IB10PRINT "CALCULATEDDELTA T(O)'

IB20 INPUTB

1830W=O

IB40REM

TRANs,,TIME1850REM CALCULATEEXPERIMENTALDELTAT(O) AND AVG. c,T

1860REM AND THEIRUNCERTAINTIESUSINGA WEIGHTEDAVG.

I070REM

ORIGINAL PAGE IN

OF POOR QUALITY
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IBBOXi=0
1890X2=0
1900YI=0
1910Y2=0
!920FORi=l TO2.(JI+i)-1
!930Z=I-(JI+I)
1931N=Z-B
1940E(1)=D(1)+N/F2*(I/0.9-1)
1950F(!)=P(1)+N/F2
1960XI=XI+E(1)*(I/U(1)_21
1970YI=YI+F(I)*(IIS(1)'2)
19B0X2=X2+IiU(1)"2
1990Y2=Y2+I/S(I_^",_

2000 ='_N_X, I

2010 T2=XI/X2

2020 T3=YI/Y2
t- OA2030 H;-X_ -0._

2040 H2=Y2_-0.5

2080 605UB 3430

2098 REM STOREDATA

2100 REM

21!0 TLIST

2120 PRINT "

2130PRINT 'ENTERI OF (LAST)FILE TO STOREDATA ON"

2140 INPUTF3

2150 Z:30

2160 Z=Z+LEN(S$)+2+LEN(D$)+2+LEN(B$}+2+LEN(F$)+2

2170 Z=Z+LEN(X$)+2

2180 Z=Z+tO*(9+2*(2*(_!+I)*M1})

2190 Z=Z+IO*(6*2*(JI+I))

2200 FIND F3

2210 MARK lyZ

2220FIND F3

2230 WRITEF$,S$,B$,D$,X$,_!

2240WRITE T.,FI,F2,MI,M2,II,.._

2250 WRITE Z3,Z4,B,OI,D,C6,C7

226@FOR I=i TO 2.(51+I)-I

2270 WRITEP(1),Q(1),S(1),R(!),D(!},U(1)

2200NEXT I

2290 FOR I=I TO 2.(JI+I)-I

2300FOR K=I TO MI

2310 WRITEH(I,K),L(I,K)

2320NEXT K

_m NEXT
m T?2340WRITE T_,,_,HI,H.

2350 CLOSE

2360 PRINT

2370 PRINT

2410 PRINT

2420 PRINT

2430 PRINT

2440 PRINT

"DATASTORED"
,|

@2:'FILENAME IS ";F$

02:'FILE; IS ";F3

02:'TRANSDUCERMATERIALIS '

02:"BONDMATERIALIS ';B$

X$

ORIGINAL PAGE rS

OF POOR QUALITy
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2450PRINT@2:'SAMPLEIDIS ';S$
2460PRINT@2:'DATEDATAWASTAKENIS ';D$
2461PRINT@2:"SAMPLETEMPWAS"IT;'C"
2470 PRINT@2:'DATAPTS/OVERLAPIS ';Ml

2488 IF M2<>I THEN 2520

2490 PRINT@2:"SERIESFORMATOF M1 VALUESIS;"

2500 PRINT82:'1:2:3:4..,'

2510 GO TO 2540

2520 PRINT@2:"SERIESFORMATOF MI VALUESIS;'

2530 PRINT@2:'1:2:4:S...'

2540 PRINT@2:" '

2550 FOR Z=I TO 2

2560 IF Z<>i THEN2590

2590 PRINT@2:'DATAAT RESONANTFREQ.'

2580 GO TO 2610

2590 PRINT@2:" '

2600 PRINT@2:"DATAAT .9*RESONANTFREQ."

2610 PRINT@2:" '

2620 IMAGE3A,IX,S
OL__0 IMAGE2D,BX,S

2640 PRINT@2: USING2620:"Q/M"

2650 FOR I=! TO Mlq

2660 IFM2<>2 THEN 2690

2670 W=2_(I-I)

26B0SO TO 2700

2690 W=l

2700PRINT @2: USING2630:W

2710 NEXT I

2720 IMAGE2D

2730 IF M2<>2THEN 2760

2740W=2'(M1-1)

2750 GO TO 2770

2768W=MI

2778 PRINT@2: USING2720:W

2780 FOR I=I TO 2.(JI+I)-I

2790 IMAGE2D,IX,S

2800 PRINT@2: USING 2790:1-(JI+I)

2010 FOR K=I TO MI-I

2820 IF Z<>I THEN 2860

2830 IMAGE7D.2D,IX,S

2840 PRINT@2: USING 2830:H(I,K}

2850 GO TO 2B70

2860 PRINT @2: USING 2830:L(I,K}

2870 NEXT K

2800 IF Z<>! THEN 2920

2890 PRINT@2: USING 2900:H(I,MI)

2980 IMAGE7D.2D

2910 SO TO 2930

2920PRINT @2: USING 2900:L(I,MI)

2930 NEXT I

2940NEXT Z

2950 PRINT@2:" '

2960FOR Z=I TO 2
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297a IF Z=2 THEN388 OP'3G/ri_TAL
- _GE IS

298|PRINT 02:'DATA AT RESONANTFREg.' 0._ POOR _OUALITy
2990 60 TO 351J
35U PRINT $2:'OATA AT .OtRESONAHTFREQ.'

301| PRINT $2:' '

312| PRINT$2:USIN6 3830:'Q'

303| IMAGE2A,IX,S
3040 PRINT02:USIN6 3650:'AV6. TIME (SEC.)'

3050 IMAOE2$A,LX,S

3060 PRINT82:USIN6 3070:'STD. DEV. (SEC.)'
3070 IMAGE20A

3080 PRINTe2:' '

3090 FORI=l TO 2eiJl+l)-I

3100 IF Z=2 THEN3180

3110 PRINT02: USING3126:I-(JI+I)

3129 IMA6E2D,IX,S

3130PRINT 02:USIH6 314|:P(I)

3140 IHA6EIBE,IOX,8

3150 PRINT 02:USIN6 3165:S(I}

3160 IMAGEIOE

3170 GO TO 3210

3180 PRINT02: USING 3126:I-(JI+I}

3190 PRINT 82:USIN6 3146:Q(I)

3266 PRINT02:USIN6 3160:R(I}

3210 PRINT12:" '

3220 NEXTI

3236 PRINT$2:' '

3240 NEXTZ

3250 PRINTQ2:' '

3260 PRINT $2:'IMPEDANCEOF XDUCERIS ';Zl;' (*IE5 MECH.OHHS)'

3276 PRIHT$2:'IMPEDANCEOF 5AHPLEIS ';Z3;' (*IE5 MECH.OHHS}'

3286 PRINT $2:'IMPEOANCEOFBONOIS ';Z2;' (HE5 MECH,OHH5)'

3290 PRIHT$2:'PHASE SHIFT AT LOWFREO, IS ';6*365/(2*P1);' (DE6,)'

3360 PR[HT $2:'CALCULATEDDELTAT(6) IS ';01;' (SEC,)'
3316 FOR I=I TO 2*(Jl+l)-I

I126 PRINT$2:'

3336 PRINT$2:'DELTA T(';I-(Jl+I);') 15 ";D(I);" (5EC.)"

3346 PRINT Q2:'UNCERTAINTY(';I-(Jl+l);')IS ';U(I);'(SEC,)'

3356 NEXTI

3360 PRINT$2:' '

3376 PRINT$2:mCHOICEFOR CORRECTOVERLAP18 ';B

3386 PRINT$2:'AV6.EXPERIMENTALDELTA T(N=|)18 ';T2;' (8EC.)'

3396 PRINT$2:'5T.OEV. 15 ';HI;'(8EC.)'

3466 PRINT$2:' '

341| PRINT82:'AV6. TRANSITTIME FROHEXP. DATA18 ';T3;' (5EC.)'

3426 PRINT$2:'5T. OEV, IS ';H2;' (5EC,)'
3421 PRINT82:" '

3422 PRINT$2:'BONO AN6LEIS ';C6;' DE6REES'

3423 PRINT$2:'TIME CORRECTIONFORBONDIS ';C7;' SEC.'
3424 60 TO 3746

3436 REN

3446 REH BONDCORRECTION
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3451 REM

3461 DIM V(3e),C(31),O(3B)
_47| FOR l=I TO 3i

348E CI=(I-I)/2'(2.P1)/36|

3490 Z5:X2e(Z2/ZlITAN(CI)+TAN(|.?*PI))/(Z2/XI-TAN(B.?*PI)*TAN(CII)

35H C2:-2*Z5*Z3

3518C3:Z3*Z3-Z5*Z5
3521 C4=-2*Z2*TAN(CI)*Z3

353BE5:Z3*Z3-Z2*TANiC1)*(Z2*TAN(CI))

354B V(I)=ATN(C4/C5}

3541V(I)=V(I)*361/(2*PI)

355g C(I):ATN(O2/C3)

3551 IF C(I)>0 THEN3555

3552 C(1)=C(1)+PI

_._ C(I}=C(!)*3_/(2*PI)

3568 O(I)=V(1)/(36e,F2)-C(1)I(361ee.?iF2)

357J NEXT !

358B PAGE

3581VIEWPORT Ig,12g,IJ,gg

3590 WINDOWa,15,0([)+5*O(1)/ll,i

3591 MOVE e,e

3592 FOR I=2 TO 16 STEP 2

3593 MOVE I-2,e

3594 PRINT 'KH";I-2;

3595 NEXT I

36gg AXIS 2,0(li/[_,e,_

361g MOVE _,0(1)

362g FOR i=t TO 3_

3631 DRAW IT-_ ,'T

364B NEXT !

365_ MOVE e,T2

366_ ORAW 30,T2

36biMOVE 8,T2+H!

3_&2 DRAW !5,T2+HI

3!6_MOVE _,T2-H!

3604 ORAW !5,TI-HI

3_65 MOVE B,B*O':I!/I_

3i7@ PRINT "INPUTPHG_E ahGLEOF _TE_SZC-LCe

368g INPUTC_

368! HOME

_682 PAGE

369_ I=2,Cb-i

371e P=Zff?"_ONDA!i3tE E_ _;C_;" DEGREES'

T72_ _;;IN_ '*TZ,EZOR_ECTI_3N_OR BOND IS ';C7;'GEC.'

_748 E_
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IBBREM

121REM

13BREM

14BREM

15BREM

!GBREM

17BREM

18BREM

208REM

22BREM

27BREM

2BBREM

29eREM

3BBREM

338REM

34BREM

35BREM

4BeREM

410REM

468REM

52BREM

53BREM

54BREM

55GREM

56BREM

57BREM

571REM

572REM

573REM

574REM

575REM
576 REM
577REM

57BREM
590REM

6BBREM

63BREM

64flREM

65gREM

660REM

67BREM

680REM

6BlREM

69BREM

691REM

692REM

693REM
700REM

710REM

728REM

APPENDIX E

PROGRAMTOMEASURESTRESSVS.STRAIN
WRITTENBYPROSSER7/15/86

VARIABLES NAME TYPE

SAMPLEID. S$

DIRECTIONOF STRAINI MS

DIRECTIONOFSTRAIN2 N$

' " LOADING L$

DATE O$
CROSSSECTIONALAREAOF SAMPLE(SQ.IN.)AI
EXCITATIONVOLTAGEFORSTRAINGAGEI A2

..... 2 A3

NUMBEROF DATAPOINTS BI

VOLTAGEMEASUREMENTSFORLOAD F(1)

VOLTAGEMEASUREMENTSFOR STRAINI V(I,I}

• ' ' STRAIN2 V(I,2}
STRAINI L(I}

STRAIN2 S(1)

STRESS D(1)
MINSTRESS WI

MAXSTRESS W2

MINSTRAINI W3

MAXSTRAINI W4

MINSTRAIN2 W5

MAXSTRAIN2 W6

SUMO(l) X3

SUM (D(1))^2 X4

SUML(1) X5

SUM (L(I))^2 X6

SUMS(1) X7

SUM (S(I))^2 X8

SUM (D(I}*l(i} W7

SUM (D(1))*s{i)) we
DUMMYVARIABLE C$

' ' AS

DUMMYVARIABLE A5

INTEGERCOUNTERS I,J
DUMMYARRAYFORPLOTTING P(1)

' ' VARIABLESFORPLOTTING AS,A?
PLOTTERI B2

REGRESSIONCOEF.FORSTRESS-STRAINI RI

• ' ' STRESS-STRAIN2 R2

SLOPEFORSTRESS-STRAINI CI

• ' STRESS-STRAIN2 C2

Y-INTERCEPTFORSTRESS-STRAINI El

' ' STRESS-STRAIN2 E2

DIMENSIONCHARACTERVARIABLES

ORIGINAL PAGE IS

DF POOR QUALITY

CHARACTER(32}

• (12}

' (12)

• (12)

CHARACTER(12)
|

ARRAY
m

|

ARRAY

|

|

|

m

|

CHARACTER(32)
|

ARRAY

NUMERIC
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738 DIM S$(32),M$(12},N$(12},Lt(12>,D$(12)

740 DIN Ct(32},At(32)

753 REM
763 PEN INPUTINITIALVARIABLES

773 REM

7B3 PRINT 'INPUTSAMPLEID.'

793 INPUTSt

B33 PRINT 'INPUTDIRECTIONOF LOADINB"

BI3 INPUTLt

B23 PRINT 'INPUTDIRECTIONOF STRAINi'

B33 INPUTMI

B43 PRINT 'INPUTDIRECTIONOF STRAIN2"

B53 INPUTNt

B6B PRINT 'INPUTEXCITATIONVOLTABEFOR STRAINBABE I

883 INPUTA2

B93 PRINT 'INPUTEXCITATIONVOLTAGEFOR STRAINSAGE 2

891 INPUTA3

933 PRINT 'INPUTDATE'

913 INPUTDt

993 PRINT "iNPUTCROSS SECTIONALAREA OF SAMPLE (SO.IN.)"

!33@ INPUTAI

1333PEN

131@REM DIMENSIONVARIABLES MAXIMUM2B3 DATA PTB. TAKENABOUTEVERY

1329REM ONE SECOND

1333DIM F(233),V(233,2),L(23e),S(233),D(233)

!353REM

1363REM SET UP INSTRONAND TAKE DATA

!373REM

i3B@PRINT 'PRESSRETURNTO BEGIN TAKINGDATA'

139@ PRINT "PRESSBREAK TO STOP TAKINGDATA'

1391 PRINT 'ENTERRUN 151@TO RESUMEPROGRAM'

1433 INPUTAt

I_i3FOR I=I TO 23@

142@ INPUT_24:F(I)

1433 INPUT_12:V(I,I)

1443 INPUT_23:V(I,2)

1453BI=I

1470 FOR J=l TO 133

14S3BB=J

1493NEXT J

!533NEXT I

1513REM CALCULATESTRESSESAND STRAINS

1523REM

1543FOR !=l TO BI

1553D(1)=(F(1)-F(1))!A1*1#@*6895

1563 L(1)=-41(V(I,I)-V(I,I))/(A2*2.375)

157@S(1)=-4*(V( _. I,J-V(I,D)/(A3*2.375)

15B@NEXT I

1893REM

i933REM CALCULATEMAX AND MIN STRESS,STRAINS

1913 WI=I
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1920W2=-I
1930W3=I
1948W4:-I
1950W5:1
!968WG:-!
!978FOR !=I TO 81

!988 IF L(1)TW3THEN28@0

1978W3=L(1)

2880 IF L(I}<W4THEN2828

2818 W4=L(I}

2828 IFD(1)>WITHEN 2040

283@ WI=D(1)

2840 IF D(I}<W2THEN 2868

285@ W2=D(I}

2868 IF S(1)>W5THEN 2880

2878 W5=B(1)

2@Be IF B(1)<W6THEN 21m8

2898 WG=S(1)

2180 NEXT I

2118 PEN

2128 REM LINEARREGRESSION

2130 PEN

•2L48 BOGUS 7880

2158 REN PLOT STRESSAND STRAIN

2168 PEN

2178 SOSUB 2198

2188 GO TO 3208

2!78 82=32

228@FOR I=l TO 2
90__,@ PAGE

2211 PRINT@B2:'DATE:';O$;' SAMPLE:';S$;'

2212 PRINT@B2:'DIR.OF STRAINI: _;M$;'

222@ VIEWPORT28,12@,_0,?e

223@ DIM P(8)

224@ P(1)=WI

2258 P(2)=W2

2260P(3)=5

2278 IF I=I THEN 231@

2288 P(5)=W5

2298 P(6)=W6

2388 GO TO 2338

2318 P(5)=W3

2328 P(6)=W4

2338 P(7)=5

2348 P5=3

235_ GOSUB588@

23_@ P5=7

2378 GOSUB5@B@

2388 WINDOWP(1),P(2),P(5),P(6)

23g@ AXIS @B2:P(3),P(7),@,B
248e P5=4

241@ A$='HHH'

DIP. OF STRESS:';L$

DIP. OF STRAIN2: ';N$



-156-

2426GOSUB5668
_T,4_6 PS=B

2446 AS="
2450 SOSU66666

2466 IF I=2 THEN_76

2476 MOVE_B2:Dil),L(1)
2480 FORJ=l TO Bl

2496 DRAW @B2:D(J},L(31

2556NEXT J

2560 SO TO 2666

.B_:D(,),2570 MOVE n _ ' S(1)

2586 FOR J=l TO BI

2596 DRAW @B2:D(J),S(J)

2656 NEXT J

2666 IF I=2 THEN 2700

2676 AS=W3

2686 A�=W4

696 GO TO _,_7_a

2766 AS=W5

2716 A�=W6

2726 MOVE 8B2:WI,A?

2730 PRINT @B2:'HHHHH_C";

2746 SO TO 28[8

2759 FOR J=I TO LEN(C_)

2766 A$=SEB(C$,J,I)

_77 . ---_,,0PRINT _B2:A$;'HJ";

2780 NEXT J

2796 MOVE _B2:WI,AB

2866 PRINT@B2:'J_!';

2661 80 TO 2842

2810 IF I=2 THEN 2846

2826 C$='STRAIN_'
_T_8_0 SO TO 2756

2846 C$="STRAINI'

2841 BO TO 2756
2_84_ C$='STRESS(Pa)'

_¢_) PRINT@82:C$

_ IF B_....THEN 2886

28_6 Z9:36

2870 60 TO 2896

2880 Z9=2

28_0 HOME

2966 FOR Z8=ITO Z9

2916 PRINT_82:'
_5_9_0NEIT ZB

29_6 PRINT_B2:'MIN.STRESS:";WI;'Pa

2966 IF I=2 THEN 2996

2970 PRINT@B2:'MIN.STRAINI: ';W3;'

2986 GO TO 3626

29?6 PRINT@B2:'MIN.STRAIN2: ';W5;'

_6_6 IF I=2 THEN _BSB

3036 PRINT

MAX. STRESS:';W2;'Pa'

MAX. STRAINI: _;W4

MAX. STRAIN2:";W6

_B2:'SLOPEIS: ';CI;'(Pa_-l)"
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39qGOTO3@88
3150PRINT@B2:'SLOPEIS: ';C2;' (Pa^-1)"
308| IF I=2 THEN 31L6

3991 PRINT@B2:'Y-INTERCEPT:';El

3109 SO TO 3138

3116 PRINT@B2:'Y-INTERCEPT:";E2

3L38 IF I=2 THEN 3166

3146 PRINT@B2:'REBRESBIONCOEF.:';RI

315080 TO 3179

3L9E PRINT@82:'REGRESSIONCOEF.:';R2

3179 INPUTAS

3[86 NEXT I

3190RETURN

3290 HOME

3291PAGE

3219 PRINT 'HARDCOPY OF PLOTS?YES=IN0=2"

3220 INPUTA5

3231 IF A5<>I THEN 3270

_249 PRINT "INPUTPLOTTERNUMBER'

3241 INPUT82

3256 605U8220@

326980 TO 3360

....@ IF A5=2 THEN 3301

3280PRINT 'BADCHOICE,TRY AGAIN"

3290 GO TO 3210

3386PRINT 'STOREDATA?YES =[ NO=2'

3316 INPUTA5

332@ IF A5<>1 THEN 3350

333@ GOSUB 8@0@

334@ 80 TO 3380

3350 IF A5=2 THEN 3380

3369 PRINT 'BADCHOICE,TRY AGAIN'
777....9 80 TO 3399

3389 PEN

3460PRINT 'ANOTHERRUN? YES=INO=2'

3479 INPUTA5
3489 IF A5<>! THEN3560

3490 80 TO [370

3509 IF A5=2 THEN 3530

3518 PRINT "BADCHOICE,TRY AGAIN'

3529GO TO 3469

3536 END

5@00 REM SUBROUTINEFOR PLOTTING

5981REM P(P5)=MINIMUM# OF TICS

5810 PI=(P(PS-I)-P(P5-2))/P(P5)

592@ P2=I@^INT(LBT(PI)}

5838 PI=PL/P2

584@ IFPI>2 THEN 5880

595i IF PI=I THEN 5129

5068 P2=2*P2

5976 BO TO 512B

5@89 IF PI>5 THEN 5118

ORICllV4L. ,.

u_ POoR _4c_ _s

"_u4LI_py
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589@P2=5*P2

5188 60 TO 5128

5118P2=Ie*P2

512e.REMADJUSTDATA MINIMUM

5130PI=INT(P(PS-21/P2)

5148 P3=P2t(PI+2)

5158 IF P3<P(P5-2)THEN 5188

5168 P3=P3-P2

5178 GO TO 5158

5180 P(PS-2)=P3

5198 REM ADJUSTDATA MAXIMUM

52B8 PI=INT(P(PS-I)/P2)

521@ P3=P2*KPi-2)

5228 IFP(PS-I)<P3THEN 525@

5238 P3=P3+P2

524@ GO TO 5_nB..

_=_@P(P5-1)=P3

5268 REM P(PS)=ADJUSTEDTIC INTERVAL

5278 P(PS)=P2

5288 RETURN

688@ REM CABLEAXIS

6ele P4=P(P5-l)

6828 P(4i=P(1)

6838 P(B)=P(5)

6848 P3=ABB(P(P5-3i+P4)MAX ABB(P(P5-2)-P4)

6858 P3=INT(LBT(P3)+I.BE-8)

6@6@ P2=I@_-P3

6e78 PI=P(P5-2i-P4/2

6888P(P5I=P(P51+P4

6B98 IF P(P5)>P!THEN 6148

61B8 MOVE @B2:P(4),P(8)

611B PRINTAS;

6!28PRINT 882: USING '-O.2D,S':P(P5)*P2
6138 GO TO 6@88

6148 IF P3=8 THEN 6188

6158 P(P5)=PI

6168 MOVE @B2:P(4),P(8)

6[7@ PRINT@82: USING '2A,+FD,S":'E';P3

61B8 RETURN

7888 REM

7818 REM SUBROUTINETO DO LINEARREGRESSIONON DATA

7828 REM

7B38 X3=B

7848 X4=8

7@58 X5=8

7@68X6=8

7878 X7=8

7eBB XB=8

7898 W7=8

7188 W8=8

7118 FOR I=1 TO BI
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,.,e X3=X3+D(1)

713J X4=X4+D(I)_2

7148 XS=XS+L(I)

7158 X6=X6+L(1)A2

716e X7=X7+S(I)

717g XB=X8+S(I)*2

7188 W7=W7+D(I}*L(I)

7198 WB=W8+B(I)*S(1)

7288 NEXT I

7218 CI=(BI*W7-X3*XS)/(BI*X4-X3*2}

7228 C2=(BI*NB-X3*X7)i(BI*X4-X3"2)

7258 EI=(X4*XS-X3*W7)/(BI*X4-X3A2)

7248 E2=(X4*XT-X3fWB)/(BI*X4-X3^2)

_m,_. RI=(BI,W7.X3,XS)/((BI,X4-X3^2),(BI,X6-XS^2))^B.5

726@ R2=(BI*WB-X3*XT)/((BI*X4-X3^2)*(BI*XB-X7^2))^8.5

7278 RETURN

888@REM

BBt8 REM SUBROUTINETO STOREDATA

882@ PRINT "INPUTTITLEFOR STESS-STRAINI FILE (MAX64 LETTERS)'

B838 DIM B$(b4),K$(641

8840 INPUTB$

8@58 PRINT 'INPUTTITLEFOR STRESS-STRAIN2 FILE (MAX64 LETTERS}'

8868 INPUTKS

8@78 AS=@

8871A5=AS+LEN(B$1+LEN(K$)+IB*(BI*2)+tB

8888 TLIST

8898PRINT "

8188 PRINT =INPUT# OF (LAST)FILE TO STOREDATA FOR STESSSTRAINI'

St1@ INPUTM3

8128 FIND M3

813@MARK I,A5

St4@FIND N3

BtS@ WRITEB$

8168WRITE 81

8170 FOR I=l TO BI

BIB@WRITE D(1),L(1)
8198 NEXT I

8288CLOSE

8218 FIND M3+I

822@MARK I,A5

8238 FIND M3+I

8248WRITEKS

8258 WRITE81

8288FOR I=I TO 81

8278 WRITED(I)_S(1)

8288NEXT I

829@CLOSE

B3B@ PRINT 'DATAFOR STRESS-STRAINI STOREDON FILE ';M3

B318 PRINT _DATAFOR STRESS-STRAiN2 STOREDON FILE ';M3+I

832@ RETURN
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APPENDIX F

In thisappendix, the derivationsof the independent thirdorder elasticmoduli for

the symmetries of transverse isotropy and orthotropy are considered. After considera-

tions of the symmetry of the stressand strain tensors and the existence of a strain

energy function, the number of independent third order moduli for the most general

anisotropic solid is reduced to 56. The number of independent third order elastic

coefficientscan be reduced furtherifthe effectof the elasticsymmetry of the material is

considered. As with the case of the linear elasticmoduli, the effectof symmetry rota-

tions on the strainenergy function which isextended to include terms up to thirdorder

can be used to determine the independent moduli for the differentsymmetries. Since

only third order terms are being considered,only the portion of the strain energy with

third order terms (¢3) need be considered. Itisgiven by

1 3 1 2
_3 = "_-_-]CAAA_7._"_"-_-_CA.AB_TA_TB + _ CABD_TA_TB_D • (F.I)

t) A _A_B A<B<D

The process isexactly the same as was the case of reduction of the second order

moduli. The strain energy function iswritten out. Then the effectof a specifiedrota-

tion on the straintensor components isdetermined and then substitutedinto the strain

energy function. Then the rotated and original strain energy functions are equated

term by term to determine the relationshipsbetween the moduli. However, itwould be

both too time consuming and space consuming to write out the necessary equations for

each symmetry rotation. Thus, in thisappendix only the effectson the moduli for each

rotation willbe given. These are determined by simple algebraic manipulations.

The orthotropic moduli are determined firstby considering the effectsof two fold

rotations about each of the three axes. For a 180 degree rotation about the x2 axis

which has a transformation matrix given by
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OOl]= 1
0

(F.2)

24 of the moduli drop out leaving 32 independent moduli. The moduli which drop out

are C114_ C1.18 _ C124_ C128_ C134_ C138_ C146_ C166_ C224_ C228_ C234_ C238_ C245_ C2_8_ C334_ C336_ C345_ C350_

c4e , c44e, c_, c400, c_, and c000 • These can all he shown to equal zero.

The effect of a two fold rotation about the x t axis is to reduce the number of

independent moduli to twenty. The moduli c_, c115, c_, Css6, c4_, c140, c1_, clss,

C2s6, ca40, and c6ee all become equal to zero. This leaves the remaining independent

moduli as Clll_ C112_ C113_ C122_ C123_ C133_ C144_ C166_ C106_ C222_ C223_ C233_ C244_ C2_ _ C280_ C333_

cs44, cs_, Cs0e, and c4s e . As with the case of the second order moduli, the third sym-

metry rotation about the x3 axis does not reduce the number of independent moduli

further. Thus the 20 independent moduli for an orthotropic material are those listed

above with all other CABDffi 0.

Again, the transversely isotropic moduli can be determined by further reducing

the orthotropic moduli by applying the additional symmetry condition that the material

be isotropic in the xl, x2 plane. This means that the material can be rotated by any

angle around the x3 axis and be in an elastically equivalent position. This reduces the

number of independent moduli to nine. They are cm, cu2, c11s, cl2s, c13s, c144,

c1_, csss, and cs44 • The following relations hold for the remaining nonzero moduli

c222 _ Clll_ c355 _c344

1
C223 _ C113, C166 _ C266 -- (Cll I -- Ci12)

4

C255 _--"C144, C223 ffi C133 (F.3)

1
c24 4 ffi c155, C366 -- "(Cll3 -- c123)

2
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1
/ _t

C122 -_- CI129 C456 -_ --_C155 -- C144}.
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APPENDIX G

IBB REM

118 REM

128 REM

!3B REM

148 REM

!5B REM

16e REM

178 REM

IBB REM

198REM

2Be REM

228 REM

278 REM

3BB REM

338 REM

348 REM

4e8 REM

468 REM

528 REM

530 REM

548 REM

558 REM
571REM

572 REM

573 REM

574 REM

577 REM

598 REM

6BB REM

638 REM

648 REM

658 REM

668 REM

67BREM

68e REM

690 REM

692 REM

708 REM

718 REM

720 REM

73B DIM

740 DIM

750 REM

760 REM

778 REM

PROGRAMTO MEASUREP2L2FREQUENCY

CHANGESAS A FUNCTIONOF APPLIEDLOAD AND PLOT AND

STOREDATA. WRITTENBY PROGSER2/25/86

VARIABLES NAME TYPE

SAMPLEID. S$ CHARACTER(32)

MODE OF WAVE MS " (12)

DIRECTIONOF PROPABATION NS ' (12)

• ' ' POLARIZATION PS ' (12)

' ' LOADING L$ ' (12)

DATE DS CHARACTER(12)

CROSS SECTIONALAREA OF SAMPLE (SQ.IN.)AI

NUMBEROF DATA POINTS BI '

FREQUENCYMEASUREMENTS (Hz) F(I) ARRAY

VOLTAGEMEASUREMENTSFOR LOAD (VOLTS} V(I)

STRESS (Pa) L(1) ARRAY

DELTA F/F AT EACH POINT O(1) '

MINIMUMDELTA F/F WI '

MAXIMUMDELTAF/F W2 '

MINIMUMSTRESS (Pa) W3 '

MAXIMUMSTRESS ' W4 '
SUM D(1) X3 '

BUM (D(1))_2 X4 '

SUM L(!) X5 '

SUM (L(1))_2 X6 '

SUM (D(1)*l(i) W7 '

DUMMYVARIABLE CS CHARACTER(12)

' " AS '

DUMMY VARIABLE A5 '

INTEGERCOUNTERS I,J '

DUMMY ARRAYFOR PLOTTING P(1) ARRAY

" VARIABLESFOR PLOTTING AS,A9 NUMERIC
PLOTTERM 82 '

REBRESSIDNCOEF. FOR STRESS-DELTAF/F RI

SLOPE FOR STRESS-DELTAF/F Cl '

Y-INTERCEPTFOR STRESS-DELTAF/F El '

DIMENSIONCHARACTERVARIABLES

7BB PRINT 'INPUTSAMPLEID.'

790 INPUTS$

BBB PRINT 'INPUTMODE OF WAVE'

BIB INPUTMS

B20 PRINT 'INPUTDIRECTIONOF POLARIZATION'

INPUTINITIALVARIABLES

SS(32),M$_I_),Nf,I_)rS(I_),LS(12),D$(12)

C$(32),AS(32)
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B3BINPUTP$
B4ePRINT'INPUTDIRECTIONOFPROPAGATION"
B5mINPUTN$
068PRINT'INPUTDIRECTIONOFLOADING'
070INPUTLI
900PRINT'INPUTDATE"
910INPUTD$
990PRINT'INPUTCROSSSECTIONALAREAOFSAMPLE(SQ.IN,)"
1800INPUTAI
1301REM
1311REMDIMENSIONVARIABLESMAXIMUM210DATAPTS.TAKENABOUTEVERY
1320REMONESECOND
1330DIMF(200),V(200),L(200),D(200)
!358REM
1360PENSETUPINSTRONANDTAKEDATA
1370REM
1300PRINT'PRESSRETURNTOSTARTTAKINGDATA'
1390PRINT"PRESSBREAKTO_UITTAKINGDATA"
1391PRINT'THENENTERRUN1510'
1400INPUTAS
141BFORI=l TO200
!420INPUT_3:F(I)
143BINPUT_24:V(I)
1450BI=I
1470FORJ=1TO05
1480Bg=J
1490NEXTJ
15mSNEXTI
1510REMCALCULATESTRESSES
1520REM
154BFORI=l TOBI
1550L(Ii=(V(1)-V(I})/AI_6B95tlB00_-I
1570D(1)=(F(1)-F(1)i/F(1)
15BiNEXTI
1890REM
1900REMCALCULATEMAXANDMINSTRESS
1910WI=I

1920W2=-1

1930 W3=I

1940N4=-I

1970 FOR I=1 TO B1

1980 IF L(1))W3THEN 2000

1990 W3=L(1)

200@ IF L(1)<N4THEN 2028

201@ W4=L(1)

2020 IF D(I}>WITHEN 2040

2030 WI=D(1)

2040 IF.D(1)<W2THEN 2100

2050 N2=D(1)

2100NEXT I

2110 REM
5f5_0 REM LINEARREDRESSION

2138 REM

AND DELTAF/F

AND DELTAF/F
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2140GOSUB7B00
2t50REMPLOTSTRESS VS.DELTAF/F
2160REM
qt7_,_0 GOSUB21°0

2180 GOTO3200

2210 PAGE

_,1PRINTQB2:'OATE: ';D$; SAMPLE:';S$;'

22t2 PRINT@B2:"DIR.OF PROPAGATION:';N$;"

2213 PRINT@B2:'DIR.OF POLARIZATION:';P$

_J VIEWPORT_ _

2230 DIM P(8)

_4= P(5)=WI

2258 P(6)=W2

2260 P(3)=5

_.,,,0P(I)=W3

2328 P(2)=W4

2330 P(7)=5

2340 P5=3

_'50_ GOSUB5000

236_ P5=7

2378 GOSUB5000

2380 WINDOWP(1),P(2),P(5I,P(6)

2390 AXIS @B2:P(3),P(7),O,0
2400 P5=4

2410 A$="HHH'
2_4_0 GOSUB6_00

2430 P5=8

2440 AS:'"

2450 GOSUB _000

2470 MOVE @B2:L(1),D(1)

2480 FOR J=l TO Bl

24Q00RAW @B2:LiJi,O(J)
2550 NEXT J

2670 AS=W3

268_ Ag=W4

_7_0 MOVE @82:AO,W2

2730 PRINT@B2:"HHHHHJJ';

2740 C$='DELTAF/F'

,7_0 FOR J=l TO LEN(C$)

27_0 A$=SEG(C$,J,I)

2770 PRINT@B2:A$:'HJ"

2780 NEXT J

27_0 MOVE @B2:AB,WI

2800 PRINT @B2:'JJ_';
_8_0,_C$='STRESB(Pa)'

2841 PRINT_02:C$

2850 IF _,..,.,,=_'_THEN 288_

28_0 Z9=30

2870 GO TO 2898

2880 Zg=2

WAVE MODE: ';MS

DIR.OF STRESS:";L$
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2_90 HOME

290@ FOR ZB:I TO Z9

2910PRINT @B2:'"
nO_9.0 NEXTZ8

2930 PRINT @B2:'MIN.DELTAF/F: ";WI;"

2970 PRINT@B2:"MIN.STRESS:"_W3;'(Pa)";'

3030 PRINT@B2:'SLOPEIS: ';CI;'(PaA-1)"

3090 PRINT@B2:"Y-iNTERCEPT:";El;'(Pa'-1)'

3140 PRINT@B2:'REGRESSIONCOEF.:';RI

3170 INPUTAS

3190 RETURN

:2B0 HOME

3201 PAGE

3210 PRINT 'HARDCOPY OF PLOTS?YES=I NO=2"

_0._..INPUTA5

32_0 IF A5<>ITHEN 3270

3240 PRINT "INPUTPLOTTERNUMBER'

3241 INPUTB2

3250 GOSUB .._10

3260 GO TO 3300

3270 IF A5=2 THEN 3300

3280 PRINT 'BAD CHOICE,TRY AGAIN"

3290 GO TO :2!0

3300 PRINT "STOREDATA?YES =I N0=2'

3310 INPUTA5

3320 IF A5<>!THEN 3350

3330 GOSUB_000

3340 GO TO 33S0

3350 IF A5=2 THEN 3380

3360 PRINT 'BADCHOICE,TRY AGAIN"

3370 GO TO 3300

3380 PEN

3460 PRINT 'ANOTHERRUN? YES=I NO=2'

3470 INPUTA5

3480 IF A5<>!THEN 3500

3490SO TO 1370

3500 IF A5:2 THEN 3530

3510 PRINT 'BADCHOICE,TRY AGAIN"

3520GO TO 3460

3530 END

5000 PEN SUBROUTINEFOR PLOTTING

5001REM P(PS)=MINIMUM! OF TICS

5010 PI=(P(PS-!)-P(PS-2))/P(P5)

5020 P2=IO_INT(LGT(P!))

5030 PI=PI/P2

5040 IF Pl>2 THEN 5080

5050 IF PI=I THEN 5120

5060P2=2*P2

5070 GO TO 5120

5000 IF PI>5 THEN 5110

5090 P2=5*P2

MAX. DELTAF/F: ')W2

MAX, STRESS:";W4;'(Pal'
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51_0GOTO5120
5110P2=10*P2
5[20REMAD3USTDATAMINIMUM
5!30PI=INT(P(P5-21/P21

Po=P_*(P!+2)5140" n

5150 IF P3<P(P5-2)THEN 5[80

5160 P3=P3-P2

5170 GO TO 5150

5180 P(PS-2)=P3

5190 REM ADJUSTDATA MAXIMUM

5200 PI=INT(P(P5-1)/P2)
5ni__.. P3=P2*(P[-2)

5220 iF P(P5-I)<P3THEN 525_

523@ P3=P3+P2

5240 SO TO 5220

5250 P_P_-I_-P_,,_,-

5260 REM P(P5)=ADJUSTEDTIC INTERVAL

5270 P(P5)=P2

5280 RETURN

6000 REM LABLEAXIS

6010 P4=P(PS-I)

6020 P(4)=P(1)

6030 P(B)=P(5}

6@40 P_=ABS(P(P5-3}+P4}MAX ABS(P(P5-2}-P4)

6@50 P3=INT(LGT(P3)+I.@E-8)

6@60 P2=IB_-P3

6@70 PI=P(P5-2)-P4/2

6000 P(PS)=P(P5)+P4

6090 IF P(P5)>PITHEN 6140

6[00 MOVE @B2:P(4)_P(8)

6[10 PRINTAS;

6120 PRINT@B2: USING '-D.2D,S':P(P5)*P2

6130 GO TO 6080

6140 IF P3=0 THEN 6180

6150 P(P5}=PI

6160 M_VE @B2:P(4),P(8)

6170 PRINT_B2: USING"2A,+FD,S':"E";P3

6180 RETURN

7000 REM

7010 REM SUBROUTINETO DO LINEARREGRESSIONON DATA

7020 REM

703_ X3=0

7@40 14=0

705@ 15=0

7_60 16=0

7090 W7=0

7[I@ FOR I=I TO BI

,_0 X3=X3+D(1)

7t30 X4=X4+D(1)_2

7t40 X5=X5+L(I}

7150 XG=XG+L(I}_2
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718Q W7:W7+O(1)tL(1)

72H NEXT I

721e C%:(BI*WT-X3tXS)/(BI*X6-XS_2)

723Q EI:(X6tX3-XSIW?)/(BItX6-XS^2)

7258 RI:(BItWT-X3_X5)/((BI+X4-X3^2)t(BI_X6-X5^2))^B,5

7_,0 RETURN

8BBB REM



100REM
110REM
120REM
130REM
140REM
15aREM
160REM
170REM
180REM
198REM
200REM
210REM
=_20REM

230 REM

240 REM

250 REM

260 REM

270 REM

280 REM

290 REM

3@0 REM

310 REM

320 REM

33B REM

340 REM

7__0 REM
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APPENDIX H

NONLINEARDATA ANALYSISPROGRAM(TRANSVERSEISOTROPYI

DETERMINE7 OF 9 NONLINEARCOEF.BY LEASTSQUARESFIT

USING24 SAC MEASUREMENTS

WRITTENBY PROSSERiI-I@-86

VARIABLES

LINEARELASTICSTIFFNESSE5 K(II

" ' COMPLIANCES S(I)

SAC MEASUREMENTS H(I,I)

UNCERTAINTIESIN SAC'5 H(I,2)

NONLINEARCOEF'S C(I,I)

MAX. UNCERTAINTYIN NONLINEARCOEF'S C(I,2)

PROB. ' .... C(I,3}

RECALCULATEDSAC'S H(I,3)

MAX. UNCERTAINTYIN RECALCULATEDSAC'S H(I,4)

PROB. ' . , u H(I,5)

COEFICIENTSOF EQ'S (24EQ., 7 UNKNOWNS) A(I,_)

A(I,J}_A(I,M} E(I,J)

INVERSEOF E(I,J) F(I,J)

PRODUCTOF E AND F FI(I,J)

PRODUCTOF F AND E F2(I,J)
CONDITIONNUMBEROF E Z3

H(I,I)+CONSTANTTERMS Y(I}

INTEGERCOUNTERS I,J,L,M

PERCENTDIFFERENCEBETWEENMEASUREDAND CALC SAC'S V(1)

" UNCERTAINTYIN CALCULATEDSAC'S T(I,2)

I@00REM INPUTDATA

1001DIM K(3),S(4),H(24,5),A(24,7),C(7,3)
I@I@ PAGE

I020 PRINT 'INPUTLINEARELASTICSTIFFNESSMODULI(GPa)'

1030PRINT 'II-I,12-2,44-3'
1040FOR l=I TO 3

1050PRINT 'INPUTC';I
i060 INPUTk(1)

1070 NEXC I

IBBaPAGE

1090PRINT 'INPUTLINEARELASTICCOMPLIANCEMODULI(GPA)A-I'

1100PRINT "!I-I,12-2,13-3,33-4'

III@FOR I=I TO 4

1120PRINT 'INPUTS';I

1130 INPUT8(I)

1140NEXT I

1150PAGE

1160PRINT 'INPUTSAC'SAND UNCERTAINTIES(GPa)^-I"

I17BPRINT 'I_-I,_I -? _ _7 7, _ _ ? 7 7 79 .

liB@ FOR I=I TO B

II?@PRINT 'INPUTSAC ';I

1200 INPUTH(I,I}
1210 PRINT 'INPUTUNCERTAINTY'

1220 INPUTH(I,2)

123@NEXT I

ORIGINAL PAGE _S

OF POOR QUALITY
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1240PA6E
1250PRINT"SAC'SCONT'D.'
1260PRINT,123_9,213_10__,i_,,,_,-7'3"'_,_,,_,'7'-'_._,232-14,132-15,23!-16'

1270FOR I=9 TO 16

1280PRINT "INPUTSAC "_I

1290 INPUTH(I,1)

1300PRINT "INPUTUNCERTAINTY'

1310 INPUTH(I,2)
1320NEXT I

1330PAGE

1340 PRINT"SAC'SCDN'T.'
O_ 5 _ 0 5 _ n1350 PRINT"0!I-17_022-181012-19_021-20_013-2[,0_-_2,B_I-.3_03_-_4

1360FOR I=17 TO 24

1370PRINT "INPUTSAC ';I

!380 INPUTH(I,l)

1398PRINT "INPUTUNCERTAINTY'

1400 INPUTH(l,2)

1410NEXT I

142_PEN CALCULATECOEF'SOF EQ.S

1430 A=O

1440A(l,I)=S(2)/(2*K(II>

1450A(1,2)=S(1)/(2*K(1))

146_A(I,3)=G(3)/(2*K(1))

1470A(3,1)=A(I,3)

1480 A(3,2)=A(I,3)

1490A(3,3)=Gi4)/{2*K(1))

1500 A(5,1)=(S(1)+S(2))*O.25/(K(1)-K(2))

1510 A(5,2)=-A(5,I)

1520 A(5,3)=O.5*S(3)/(K(1)-K{2))

1530A(5,4)=-A(5,31

1531A(7,1)=A(5,3)

1532 A(7,2)=A(5,4}

1540 A(7,3)=O.5*S(4)/(K(1)-K(2))

1550 A(7,4)=-A(7,3)

1560 A(9,5)=S(1)!(2*K(3)

1570 A(9,6)=G(2)/(2*K(3)

1580 A(9,7)=S(3)/(2*K(3)

1590 A(11,5)=A(9,7)

1600A(11,b)=A(9,7)

1610 A(t1,7)=S(4)/(2*K(3))

1620A(1315)=A(9,6)

1630A(t3,6)=A(9,5)

1640A(t3,7)=A(9,7)

1650A(15,5)=A(9,5)

1660A(t5,6)=A(9,6)

i670A(I5,7)=A(9,7)

1680B=S(1)+G(2)+S(3)

1690 D=2.S(3)+S(4)

1700A(I7,1)=B/(2*K(I))

1710 A(17,2)=A(17,1)

1720A(17,l)=D/(2*K(1))

1730 A(19,1)=O,5*B/(K(1)-K(2))

1740 A(Ig,2)=-A(19,1)
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1758A(19,3)=D/(K(1}-K(2})*B.5

1760A(19,4)=-A(19,3)

1770 A(21,51=B/(2*K(3))

178JA(21,6)=A(21,5)

179@A(21,7)=D/(2*K(31)

180QA(23,5}=A(21,5}

1810A(23,6)=A(21,51

1828AI23,7)=A(21,71

1830FOR J=1 TO 12

184QFOR I=I TO 7

1858A(2eJ,I)=A(2*J-I,I)

1868NEXT I

187@NEXT J

1880REM ADD CONSTANTTERMSTO SAC'S

1898DIM Y(24}

1900 Y(1)=-(H(!,l)+S(2))

1918Y(2)=-(H(2,1)+S(2))

1920 Y(3!=-(H(3,1)+S(3))

1930 Y(4)=-(H(4,1)+S(3))

]948 Y(5)=-(H(5,1)+S(1))

1950 Y(_)=-(H(6,1)+S(1))

1960 Y(7)=-(H(7,1)+S(3))

1978 Y(B)=-(H(8,1)+S(3))
1988 Y(9)=-(H(9,1)+S(_))

1990 Y(10)=-(H(19,1)+S(3))

2088 Ytll)=-(H(ll,1)+S(4))

2019 Y(12)=-(H(12,1)+S(4])

2928 Y(13)=-(H(13,1)+S(I))

2030 Y(14)=-(H(14,1)+S(1))

2049 Y(15)=-(H(15,1)+S(2))

2050 Y(Ib)=-(H(16,1)+S(2))
2860 Y(t7):-(H(17

2078 Y(18)=-(H(18

298B Y(19)=-(H(19

2999 Y(29)=-(H(20

2190 Y(21)=-(H(21

2119 Y(22):-_H(22

2128 Y(2_)=-(H(23

2139 Y(24):-(H(24

1)+B+1/(2*K(1)))

,1)+B+1/(2*K(1)))

1)+B+1/(K(1)-K(2)))

,1)+B+t/(K(1)-k(2)))

1)+D+1/(2*K(3)))

,1)+D+i/(2*K(3]))
1)+B+1/(2*[(3)))

I)+B+1/(2*k(3)))

2149 REM COMPUTEA(I,M)eA(I,J)

2158DiM E(7,7)

2169 FOR M=I TO 7

2178FOR J=l TO 7

2189 E(M,J)=O
2190FOR I=1 TO 24

2296 E(M,J)=E(M,J)+A(I,M)eA(I,J)
2219 NEXTI

2229 NEXTJ

22_9 NEXTM

2240 REMCOMPUTEINVERSEOF E(M,J)

2250 DIM F(7,7),FI(7,7),F2(7,7)
2269 F=INV(E)

2270 REMCOMPUTECONDIT[ONNUMBER
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22Bm ZI=-i.BE+I@B

229B Z2=-I.BE+IOe

23B_ FOR I=I TO 7

2318FOR J=1 TO 7

2320 IF E(I,_)<ZITHEN 2340

2330 ZI=E(I,J)

2340 IF F(I,J)<Z2THEN 2360

2350 Z2=F(I,J)
2360 NEXT J

2370 NEXT I

2300 Z3=ABS(Z2*Zl)

2390 FI=E MPY F

2400 F2=FMPY E

2440 REM COMPUTENONLINEARCOEF'S

2450FOR I=I TO 7

2460 C(!,I)=O

247@ C(I,2)=B

2400 C(1,3)=0
2490FOR 3=I TO 24

250e FOR L=I TO 7

2510 C(I,I)=C(I,I)+F(L,I)tA(J,L)*Y(J)

2520 C(I,2)=C(I,2)+ABS(F(L,I)tA(J,L))tH(J,2)

2530 NEXT L

2540 NEXT J

2550 C(!,3)=C(1,2)/23^0.5

256e NEXT I

2570 REM RECALCULATESAC VALUESUBINBDERIVEDVALUES

2580 H(I _ - _,_)--(_tK(1)tS(2)+SII)*C(2,1)+S(2)*C(I,I)+S(3)*C(3,1))

2590 H(I,3)=H(I,3)/(2tK(1))

2600 H(3,_i=-(Z*K(IitS(3)+S(3)t(C(I,Ii+C(2,1))+S(4)*C(3,1i)

2610 H(3,3)=H(3,_)I(2tK(1})

2620 H(5,3)=(K(1)-K(2))tS(1)+O.25_(S(1)+S(2})_(C(I,I)-C(2,1))

2630 H(5,3)=H(5,3)+O.5*S(3)*(C(3,1)-C(4,1))

2640 H(5_3)=-H(5,3)/(K(1)-K(2))

2650 H(7,3)=(K(D-K(2))*S(3)+O.5*5(3)_(C(I,I)-C(2,1))

2660 H(7,3)=H(7,3)+O.5_S(4)t(C(_,I)-C(4,1))

2670 H(7,3)=-H(7,3)/(K(1)-K(2))

2600 H(g,3)=-(2tK(3)tS(3)+SCI)IC(5,L)+S(2)tC(6,1)+S(3)tC(7,1}}/(2tK(3))

2690 H(II,3)=-(2_K(3)_S(4)+S(3)_(C(5,1)+C(6,1))+S(3)tC(7,[))/(2tK(3))

2700 H(II,3}=-(2*K(3)tS(1)+S(1)*C(6,!)+S(2)IC(5,!)+S(3)*C(7,1)/(2.K(3))

271m H(15,3)=-(2tK(3)tS(2)+S(1)*C(5,I)+S(2)_C(6,1)+S(3)IC(7,1)/(2tK(_))

2720 H(17,1)=-(I+2tK(I)tB+BI(C(I,I)+C(2,1))+D÷C(3,1))/(2tK(I)

27_@ H(Ig,3)=I+(K(1)-K(2))*B

2740H(19,3)=H(19,3)+O.5_(B*(C(I,I)-C(2,1)+D_(C(3,i)-C(4,1})

2750 H(19,3)=-H(19,3)/(K(1)-K(2))

2_60 H(21,3)=-(I+2tK(3)*D+B*(C(5,1)+C(6,1+D*C(7,1))/(2*K(3)

2770 H(23,3)=-(I+2_K(3)_B+B_(C(5,1)+C(_,I))+D_C(7,1))/(2_K(3)

2780 FOR I=I TO 12

2790 H(2_I,3)=H(2_I-I,3)
200_ NEXT I

2810 DIM W(7,2)

2020 FOR I=! TO 2

2B30 FOR _=I TO 7
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2840WIJ,I)=ABS(C(J,I+IIIC(J,I)I
2858NEXTJ
2868NEXTI
2870FORI=l TO2
2888 FORJ=t TO 4

2898 H(O,I+3)=(W(t,I)+W(2,1)+W(3,1))*N(J,3)

2988 NEXT J

2910 FOR J=5 TO 8

2928 H(J,I+3)=(W(I,Ii+W(2,1)+W(3,1)+W(4,1))*H(J,3)

2938 NEXT J

2948 FORJ=9 TO 16

2958 H(J I+3)=(W(5,1)+W(6,1)+W(7,1))*H(J,38

2968 NEXT J

2970 FOR J=17 TO 18

2988 H(J,I+I)=(W(I,I)+W(2,1)+W(3,1))*H(J,3)
2998 NEXT J

3888 FOR J=19 TD 28

3818 H(J,I+I)=(W(I,I)+N(2,!)+W(I,I)+W(4,1))tH(J,3)

3828 NEXT J

3030 FDR J=21 TO 24

3848 H(J I+38=(W(S,I)+W(6,1)+W(7,1))iH(J,3)

3858 NEXT J

3868 NEXT I

3878 FOR I=4 TO 5

3888 FOR J=l TO 24

3898 H(J,I)=ABS(H(J,I))
3188 NEXT J

3118 NEXT I

3128 DIN V824)

3138 FOR I=I TO 24

3148 V(1)=ABS((H(I,I)-H(I,I))/H(I,I))

)158 V(1)=V(18*I88

3168 NEXT I

3178 OIM T824,2)
3188 FOR I=l TO 2

3198 FOR J=I TO 24

3288 T(J,I)=H(J,I+3)IH(J,3)tlH

3281T(J,I)=ABS(T(J,I))

3210 NEXT J

3228 NEXT I

3238 REM PRINTOUT DATA

3248 REM

3258 N=32

3268 PASE

3278 60SUB 3388

3288 PRINT 'PRINTEDCOPY? YES =I NO =2 '

3298 INPUTZ5

3388 IF Z5=lTHEN 3348

3318 IF Z5=2THEN 4818

3328 PRINT 'BAD CHOICE'

3338 GO TO 3288

3348 PRINT "INPUTPRINTER#'

3358 INPUTN

ORIGINAL PACE 13

OF POOR QUALI'I_
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3360 GO•US

3370 60 TO

33800PRINT

3398 PRINT

34iliiPRINT

3410 PRINT

342B PRINT

343iiPRINT

3440 PRINT

3450 PRINT

3460 PRINT

347iiPRINT

3488 PRINT

34900PRINT

35iliiPRINT

3510 PRINT

3520PRINT

353iiPRINT

_540PRINT

3550 PRINT

3560 PRINT

3570 PRINT

3580 PRINT

359m PRINT

36000PRINT

361iiPRINT

3620 PRINT

363iiPRINT

36400PRINT

365@ PRINT

366iiPRINT

36700PRINT

3688 PRINT

36900PRINT

37i10PRINT

371iiPRINT

37200PRINT

3730 PRINT

3740 PRINT

_,_0 PRINT

3760 PRINT

3770 PRINT

37800PRINT

37900PRINT

38008PRINT

3810 PRINT

3820 PRINT

38300PRINT

3840 PRINT

385iiPRINT

3860 PRINT

387iiPRINT

3880 PRINT

33B00

4illii
@N:'NONLINEARDATA ANALYSISFOR TRANSVERSEISOTROPYMODEL'

, |

• INPUTDATA'
• l

•LINEARELASTICMODULI'
B |

'C11= ';K(1);'(SPa)

'C12 = ';K(2);• (SPa)

'C44= ';K(3);'(SPa)

' S33 = ';S(4);'(SPa)'-I•
, m

'VELOCITYDERIVATIVEDATA (SPa)"-1'
m i

H122 = ';H(I,I);'+/- ';H(I,2)

H211 = •;H(2,1);'+/- .._4_n,....,..')i

H322 = ';H(3,1);"+/- ';H83,2)

H311 = ';H(4,1);'+/- ";H(4,2)

HI21 = ';H(5,1);' +/- ';H85,2)

H212 = ";H(6,1);• +/- ..u+L,.,,,,_.,'_i

H312 = ';H(7,1);'+/- ';H(?,2)

H321 = ';H(8,1);'+/- •;H(8,2)

H123 = •;H(9,1);"+I- •;H(9,2)

H213 = ';H(10,1);'+/- ';H(10,2)

H323 = m;H(II,I);'+/- •;H(II,2)

H313 = ';H(12,1);'+/- ';H(!2,2)

HI31 = •;H(13,1);• +/- ';H(13,2)

H232 = ';H(14,1);'+/- ';H(14,2)

H132 -"';H(15,1);'+/- ';H(15,2)

H231 = ';H(16,1);'+/- ';H(16,2)

H0011= ';H(17,1);'+/- ';H(17,2)

Hi122= •;H(IS,I);• +/- •;H(IS,..')i

Hoot2= ";H(19,1);'+/- ';H(19,2)

H0021= ';H(281,I);• +/- ';H(20,2)

Hi)I3= •;H(21,1);'+/- ,.,_?i')i

Hi123= ' '_'_I);' +/....u+.v_,_;H(,-,-, ,,,,,.,.,,.,

H031 = •;H(23,1);" +/- •;H(,_.,,,.)'_""_

Hi!32 = ';H(24,1); • +/- ';H824,2)

Sll = ';S(1);• (GPa)_-I'

m ;'S12 = ';S,_) (6Pa)^-I '

S13 = ';S(3);• (GPa)^-I•

@N:

ilN:

@N:

ilN:

@N:

ilN:

@N:

ilN:

@N:

@N:

ilN:

@N:

@N:•I.

@N:•2.

@N:•3.

@N:'4.

ilN:'5.

@N:'6.

ilN:'7.

@N:'il.
@N:•9.

QN:'IO.

ilN:'ll.

(N:'I2.

@N:'I3.

ilN:•14.

@N:'I5.

_N:'I6.

ilN:'lT.

@N:'I8.

@N:'lg.

eN:'28.

ilN:'2I.

@N:'22.

@N:'_T

@N:'24.

ilN: • •

@N:

IN:

@N:" '

IlN:'CIII= ';C(I,1);• +!-

IlN:'CII2= ';C(2,1);• +/-

(N:'ClI3= ';C(3,1);"+/-

@N:•C123= ';C(4,1);'+/-

IlN:'CI44= ';C(5,1);"+/-

@N:'CI55= •;C86,1);• +/-

@N:

(N:

@N:

ilN:

,.r¢,,_,,,_.;n_,+/. ';C(I,3)

";C82,2);• +/- •;C(2,3)

';C83,2);• +/- ';C(3,3)

';C(4,2);'+I- ";C(4,3)

';C85,2);'+/- •;C(5,3)

';C(6,2);'+/- ';C(6,3)

•r'_14,,,,.,.,= .;C(7,1);•+/. ';C(7,2);"+/- ';C(7,3)
• P i'@'T P "__' "_,,,,..,o, .... UNDETERMINEDDUE TO LACK OF DATA'

'RECALCULATEDVELOCITYDERIVATIVESUSIN8 FITTED TOEC'S'

•THIRDORDER ELASTICCONSTANTSDERIVEDFROM LEAST'

'SQUARESFIT AND MAX. ERROR AND PROB. ERROR (SPa)'
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389gPRINT@N:'ANDMAX,ANDPROB.ERRORSINSAMEORDERASBEFORE'
3901PRINT@N:''
391@FORI=I TO24
392BPRINT@N:I;',';H(I,3);'+/- ';H(I,4)I'+/- ';H(I,5)

393@ NEXT I

394B PRINT@N:' '

395a PRINT@N:'PERCENTDIFFERENCES,MAX. AND PROB.UNCERTAINTIES"

3%B PRINT _N:' '

397B FOR [=I T024

39BB PRINT _N:I;'.';V(1);T(I,I);T(I,2)

3991 NEXT I

399!_RINT eN:' '

3992 PRINT_N:'CONOITION! FOR INVERTINBMATRIXIS: ';Z3

4@Be RETURN

4BIB END

OF p(_, ' i

ORIGINAL PAGE _3

OF POOR QUALITY
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100 REM

lib REM

120 REM

130 REM

140 REM

150 REM

160 REM

176 REM

180 REM

190 REM

200 REM

210 REH
mO_B REM

230 REM

240 REM

250 REM

260 REM

270 REM

280 REM

290 REM

300 REM

316 REM

320 REM

330 REM

346 REM

350 REH

NONLINEARDATA ANALYSISPROGRAM(ORTHOTROPICMOCEL>

DETERMINE15 OF 28 NONLINEARCOEF.BY LEASTSQUARESFIT

USING24 SAC MEASUREMENTS

WRITTENBY PROSBER11-13-86

VARIABLES

LINEARELASTICSTIFFNESSES

' ' COMPLIANCES

SAC MEASUREMENTS

UNCERTAINTIESIN SAC'S

NONLINEARCOEF'S

MAX. UNCERTAINTYIN NONLINEARCOEF'S

PROB. ' ' ' '

RECALCULATEDSAC'S

MAX. UNCERTAINTYIN RECALCULATEDSAC'S

PROB. " ' ' '

COEFICIENTSOF EQ'S (24 EQ.,15UNKNOWNS)

A(I,J)*A(I,M)

INVERSEOF E(I,J)

PRODUCTOF E AND F

PRODUCTOF F AND E

CONDITIONNUMBEROF E

H(I,I)+CONSTANTTERMS
INTEGERCOUNTERS

K(I}

S(I}

H(I I}

H(I.2)

C(I i}

C(I.2)

C(I 3}

H(I_3}

H(I 4}

H(I.5}

A(I J)

E(I.J}

F(I,J)

FI(I,_)

F2(I,J)
Z3

Y(1)

I,J,L,H

PERCENTDIFFERENCEBETWEENMEASUREDAND CALC SAC'S V(1)

' UNCERTAINTYIN CALCULATEDSAC'S T(I,2}

1000REM INPUTDATA

1001DIM K(6),S(6),H(24,5),A(24,15),C(15,3)

1010PAGE

1020 PRINT 'INPUTLINEARELASTICSTIFFNESSMODULI (GPa)"

1030PRINT 'II-1,22-2,_3-3,44-4,55-5,66-6'

1040FOR [=I TO 6

1050PRINT 'INPUTC';I

1060INPUTK(I}

1070NEXT I

!BBg PAGE

1090PRINT 'INPUTLINEARELASTICCOMPLIANCEMODULI'(GPA)^-I'

1106PRINT 'II-I??-? _x-x _x-4 13-5 12-6'

II10 FOR l=I TO 6

1120PRINT "INPUTS';I
1130 INPUTS([}

IL49NEXT I

1150PAGE

IL60PRINT 'INPUTSAC'SAND UNCERTAINTIES(8Pa)_-I'

'170PRINT ' _ _ _ 7 _ • _7 __ .I_-1,211-_,_2-3,_11 4,!21-5,212-6,_12,,_i B

I!80FOR I=l TO B

1196PRINT 'INPUTSAC ';I

1200 INPUTH(I,I)

1210PRINT 'INPUTUNCERTAINTY'

1220 INPUTH(I,2)

1230NEXT I
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124@PAGE

125e PRINT 'SAC'S CONT'D.'

126@PRINT '123-9,213-I|,323-111313-12,131-13,232-14,132-15,231-16'
1270FORI=9 TO 16

1286PRINT 'INPUTSAC ';I

1291 INPUTH(I,I)

liB|PRINT 'INPUTUNCERTAINTY"

1316 INPUTH(II2)
1321NEXT I

1339PAGE

134@PRINT 'SAC'5CON'T.'

1351PRINT '911-171022-I51612-19,621-20161_-211|23-22,031-23,632-24'

1366FOR I=I? TO 24

1376PRINT 'INPUTSAC 'iT

13BI INPUTH(I,I)
1399PRINT 'INPUTUNCERTAINTY'

1400 INPUTH(I,2)
1419NEXT I

1426REM CALCULATECDEF'8DF EQ,S

1436 A=6

144QA(I,4)=S(1)/(2+K(2))

1441A(I,5)=B(6)/(21K(2))

1442 A(I,6)=S(5)/(2fK(2))

1443A(2,1)=S(6)/(21K(1))

1444 A(2,2)=S(2)/(2eK(1))

1445A(2,3)=S(4)/(2tK(1))

1446A(_ 4)=S(5)I42+K(2))

1447 A(3 5)=S(4)/42.K42))

!445A(3_6)=S(3)/(2tK(2))

1449 A(4 I)=5(5)/(21K(I))

1451A(4_2)=S(4)/(21K(1))

1451A(4 3)=5(3)/421K(I})

1452 A(5,1_)=S(1)/(21K(6))

1453 A(514)=5(6)/(2*K(6))

1454A(5,15)=S(5)/(2_K(6))

1455A(6,I3)=S(6)/(21K(6))

1456 A(6,I4):S(2)/(2_K(6))

1457A(6,15)=S(4)I(21K(6))

145BA(7,13)=S(5)/(2tK(6))

1459A(7,14)=S(4)/(2JK(6))

1466A(7,15)=S(l)/(2*K(6))

1461A(B,13)=A(7,13)

1462A(B,14)=A(7,14)

1463A(B,15)=A(7,15)

1464A(9,7)=S(1)I(21K(4))

1465 A(9,B)=S(6)/(2*K(4))

1466A(9,9)=S(5)/(2;K(4))

1467A(IB,IO)=G(6)/(2iK(5))

1468A(IO_II)=S(2)/(2*K(5))

1469A(IO,12)=B(4)/(2;K(5))

1470A(II,7)=G(5)/(2tK(4)}

1471A(II,B)=S(4)/(21K(4))
45
,47_ A(II,9)=S(l}/(2mK(4))
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1473 A(12,1@)=S(5)/(2*K(5))

1474 A(12,11)=S(4)/(2*K(5))
1475 A(12,12)=S(3)/(2*K(5))

1476 A(13,1@)=S(1)/(2*K(5))

1477 A(13,11)=S(6)/(2*K(5))

1478 A(13,12)=S(5)/(2eK(5))

1479 A(14,7)=S(6)/(2*K(4))

148@A(14,8):S(2)/(2*K(4))

1481A(14,9):S(4)/(2*K(4))

149@A(t5,7)=A(917)

15U A(t5,8):A(9,8)

151@A(iS,9)=A(919)

152@A(16,Ze)=A(I|11@)

153@ A(I6vlI)=A(IQ,II)

154@ A(16,12)=A(1@,123

155@81=S(II+8(6)+8(5)

1568 82=S(6)+S(2)+S(4;

157| 83:5(5)+S(4)÷5(3)

1588 A(17,1)=B1/(2*K(I))
159| A(17 2)=82/(2*K(1))

16@@A(17.3):B3/(2*K(l))

161i A(18 4)=81/(2*K(2))

1620 A(18.5):B2/(2*K(2))

163@A(I8 6)=8T/(2*K(2))

164@ A(19.13):BI/(2*K(6))

165@A(19 1.4):82/(2*K(6))

166@A(19.15):B3/(2*K(6))

167BA(2B,13)=A(19,13)

168@ A(2@,I4):A(19,14)

169@A(2@,IS):A(19,15)

17@@A(21,1@)=BI/(2*K(5))

171@A(21,11):B2/(2*K(5))

1721 A(21,12):B_/(2*K(5))

173| A(22,l):B11(2tK(4))

1741 A(22,t):B2/(2*K(4))

1751 A(22,9):B3/(2*K(4))

176e A(23,11)=A(21,1|)

1771 A(23,11)=A(21,11)

178@A(23,12):A(21,12)

1791 A(24,7):A(22,7)

181@A(24,8}=A(22,e)

1811 A(24,9)=A(22,9)
188@REMADDCONSTANTTERffSTOSAC'8

1891 OIM Y(24)

19H Y(I)=-(H(I

1911Y(2)=-(H(2

1921 Y(3):-(H(3

1931 Y(4)=-(H(4

1941 Y(5)=-(H(5

195| Y(6)=-(H(6

1961 Y(7)=-(H(7

1971 Y(8)=-(H(8

,I}+8(6)}
1)+S(.6))

,1)+8(4))
1)+8(5))

_l)+S([))

.1)+S(2))

1)+S(4})

.1)+8(5))
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1981 Y(9):-(H(9,1)+S(5))

1991 Y(Ii):-(H(I9,1)+S(4))
2999 Y(II)=-(H(II
291i Y(12)=-(H(12

2821 Y(13)=-(H(13

2831 Y(14)=-(H(14

2841 Y(15)=-(H(15

2959 Y(16):-(H(16

2968 Y(17)=-(H(17

_iTi Y(IO)=-(H(18

,1)+893))
.l)+S(l))

I)+S9122

I)+S92))

,1)+S96})

I)+S96))

I)+BI+I/(2*K(1))

I)+B2+I/(2*K92))

2989 Y(19)=-(H(19I)+92+I/92*K(6))

2999 Y(29)=-(H(2E,I)+BI+I/(2eK(6))

216 Y(21)=-(H(21,1)+D3+I/(2*K(5))

2119 Y(22)=-(H(22,I)+B3+I/(2*K(4))

2121 Y(23)=-(H(23,1)+BI+I/(2*K(5))

211i Y(24)=-(H(24,1)+B2+I/(2eK(4))

2141 REHCOMPUTEA(I,H)*A(I,J)

2151 DIM E(15,15)

2169 FOR H=l TO 15

2179FOR J=l TO 15

219g E(M_J)=|
2196 FOR1=1 TO 24

2290 E(M,J)=E(HIJ)+A(IIH)*A(I,J)
2216 NEXTI

2226 NEXTJ

2220 NEXTH

2240 REHCOMPUTEINVERSEOF E(M,J)

2256 DIH F915,152
2266 F:INV(E)

2270 REMCOHPUTECONDITIONNUMBER
2286 ZI=-I.BE+IH

2299 Z2=-I.OE+IOD

23H FORI=l TO 15

2310 FORJ=l TO 15

232| IF E(I,J)<ZITHEN2346

2330 ZI=E(I,J)

2_49 IF F(I,J)<Z2 THEN2260

2350 Z2=F(IIJ)
2369 NEXTJ

2379 NEXTI

2389 Z3=AOS(Z2mZ1)

2449 RENCOHPUTENONLIHEARCOEF'8

2450 FOR1=1 TO 15

2460 C(I,I)=O

2479 C(112)=6

2486 C(II))=|
2490 FORJ=t TO 24

25H FORL=I TO 15

2510 C(I,I)=C(I,I)+F(L,I)*A(J,L)mY(J)

2520 C(I,2)=C(I,2)+ABS(F(L,I)*A(J,L))*H(J,2)
2530 NEXTL

2549 NEXTJ

2550 C([,3)=C(I,2)/23^9,5

DRIGrN'AI_ PA-GK P3

POOR QUALITY
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2560
2578
2580
2581

2582

2583

2584

2585

2586

2587

2588

2589

2591

2591

2592

2593

2594

2595

2596

2597
2598

2599

266

2611

2682

2613

2684

2665

2616

2687

2688

260q

2610

2611

2626

2631

2641

265|

2666

267J

2681

2696

2761

2716

272g

2736

2741

2758

2766

2770

2818

2820

NEXTI
R_ RECALCULATESACVALUESUSIN6 DERIVEDVALUES

H(1,_)=-(2tK(2ItS(6)+S(IIeC(4,1)+fi(61!C(SvI)+S(5)tC(6,1)J
H(I,3)=H(I,3)I(2eK(2))

H(2,S)=-(2eK(I)*S(6)+S(6)eC(1,1)+S(2)eC(2,1)+S(4)*C(3_l))

H(2,S)=H(2,])/(2*K(1))

H(3,3)=-(2*K(2}eS(4)+S(5)eC(4_L)+S(q)ec(51[)+S(3)eC(6,t))

H(3,3)=H(],S)/(2*K(2))

H(4,3)=-(2*K(1)*8(5)+S(5)*C(I,t)+S(4)*C(2,t)+S(3)*C(3,1))

H(4,_)=H(41])/(2*K(I))

H(5,_)=-(2*K(6)*S(I)+S(I)*C(1_,I)+S(6)*C(14_L)+S(5)*C([5,1))

H(5,S)=H(5,S)/(2*K(6))

H(6,3)=-(2*K(6)*S(2)+S(6)*C(tS,I)+S(2)*C(14,t)+S(4)*C(15,1))

H(6,3)=H(6,S)/(2*K(6))

H(7_3)=-(2*K(6)*S(4)+S(5)eC(t_,I)+S(4)*C(14,t)+S(_)*C(15,1))

H(7,_)=H(7,_)/(2*K(6))

H(H,S)=-(2*K(6)*S(5)+S(5)*C(L_,I)+S(4)*C(14,1)+S(_)*C(15,1))

H(9,3)=H(Sv3)/(2*K(6))

H(9,_)=-(2*K(4)*S(5)+S(1)*C(7,[)+8(6)*C(8,1)+S(5)*C(9,1))

H(gt3)=H(9,I)/(2*K(4))

H(IO,3)=-(2*K(5)eS(4)+S(6)*C(IO, I)+S(2)tC(I1,1)+H(4)*C(12,[))
H(lI,_)=H([II_)/(2*K(5})

H(XX,_)=-(2*K(4)*S(_)+S(5)*C(7,1)+S(4)*C(8,X)+S(3)*C(9,1))

H(IX_)=H([lt_)/(2*K(4))

H(12,_)=-(2*K(5)*S(_)+S(5)*C(16,1)+S(4)*C([X,1)+S(3)*C(I_,I>:

H(12,_)=H(12,3)/(2*K(5))

H(t3,3)=-(2*K(5)*S(1)+S(1)eC(tB,1)+S(6)eC(LI,I ...... C_,,,t))

H(t3,3)=H(tS,3)/(2*K(5))

H(t4,_)=-(2eK(4)*S(2)+S(6ieC(7,1)+S(2)*C(8,!)+S(4)*C(?,1))

N(14,_}:H(14,3)/(2*_(a))

H(15,_)=-(2*K(4)*S(6)+S(1)*C(7,1)+S(6)*C(B,I)+S(5)*C(?_I))

H(15,I)=H(15,i)/(2*K(4)

H(16,1)=-(2eK(5)*S(6)+S(6)*C(Ig,I}+S(2)*C(II,I)+S(4)*C(12,1))

H(16,1)=H(16,))/(2*K(5)

H(17,3)=-(I+2*BI*K(1)+BI*C(I_I)+B2*C(2,1)+B3*C(3,1))

H(17,1)=H(17,1)/(2*K(1)

H(18,))=-(I+2*K(2)*B2+BIeC(4,!)+B2*C(5,1)+BSeC(6,1))

H(IB,I)=H(IB,))/(2*K(2)

H(19,_)=-(I+2'[(6)*82+BI*C(13,I)+82.C(14,I)+8_*C(15,1))

H(II,I)=H(Ig,3)/(2*K(6)

H(2[,S)='(I+2*K(6)eBI+BI*C(II,I)+B2mC(14,1)+B)*C(15,1))

H(26,I)=H(21,l)/(2*K(6)

H(21,Si=-(l+2mK(5)eDS+BleC(IO,I)+D2*C(II,I)+9_*C(12_L))

H(21,_)=H(21,_)/(2*K(5)

H(22,_)=-(I+2*K(4)*O3+BleC(7,I)+D2*C(8,1)+9SeC(?,I))

H(22,_)=H(22,S)/(2eK(4)

H(2),_)=-(I+2*K(5)*BI+BIeC(Ig,I)+B2*C(II,I)+B)eC(12,1))

H(2S,S)=H(2S,3)/(2*K(5))

H(24,I)='(I+2*K(4)*82+81*C(7_I)+B2*C(8_I)+B3*C(9,1))

H(24,_)=H(24_)/(2*K(4))

DIM W(15,2)
FOR1=1 TO 2
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28_B FOR J:I TO 15

28aB W(J,i):ABS(C(J,I+I}iC(3,I))
285e NEXTJ

2B61 NEXT I

2878 FOR I=I TO 2

288| H(I,I+3)=iW(4,1)+W(5,1!+W(_,III_HiI,3)

2881H(2,1+3)=(W(I,I)+W(2,1)+W(3,1))*H(2,3)

2882 H(_I+3)=_Wi4,1)+W(5,11+W(6,iiitH(3,31

2883 H(4_I+_)=(WIt_+wl_ T)+W(3II)*H(4,3)

2884 H(5,1+3):!WiI3,1)+W(14,!i+WII5,1!)*H(5,_)

2885 H(6 !+3):(WII3,!)+WiI4,1)+W(15,1))*H(6,3}

2886H(T I+3):(W(I_,I)+W(I4,1I+W(15,1))_H(T,3)

2887 H(8,I+3):_W(I_,I)+W(14,1)+W(I5,1))*H(8,3)

2888 H(9 !+!)=(W{7,1)+W(B,I)+W(9,1))*H(9,3)

2889 H(I_,I+3)=(W(10,I)+W(II,I)+W(12,1))*H(10_3)

289_ H(I! I+3)=(W(7,1)+W(8,1)+W(q,I))iH(II,I)

2891H(12,i+_)=(W(10,I)+W(II,I)+W(12,1))_H(12,I)

tGg2 H(t3 I+3i:(W(t@,I)+W(tt,I)+W(_,_:,*H,W,_)
2_8% H(14 I+3)=(W(7,1)+W(8,1)+W(?,I))*H(14,3)

2874 H(tlI+3}=(W(7,1)+W(B,I)+W(9,1))*H(15,1)

,'_-t _i ,_ I)+W_I2,1))*H(16,3)2895 H(16 .._,-,N,,_,.,+W(II,

2896 H(171+l):(W(I,Ii+W(2,I)+W(l,I))_H(17,1)

"_-_ ' I)+W(5,1)+W(a,I_)_H(18,1)2897 H(18 ,+.,,-.W_4, . , .

2898 H(I91[+3):(W(I_,I)+W(14,1)+W(15,1)i_H(19,_)

2899 H(2B I+3)=!N(II_I)+W(I4,!)+W(15_!))*H(28,3)

29B(H(21,1+3)=(W(Ie,I)+W(II,I}+W(!2,!))*H(21_:)

2g_l H(22,t_ -'_/? I)+W_° r_,._o t))IH_ _

_g_ H(2),I+I)=fW(!I,I)+W(II,I)+W(12I)'_u_n__

2983 H(24,1+3)=(_(7,I+W(B,I)+W(9,1)*H(24,_)
_868 NEXT I

3@7@ FOR I=4 TO 5

3@8@ FOR J=1 TO 24
1 T_- '_90 H(_,,,-ABS(H(J,I}

3!l_ NEXT J

_Ill NEXT I

3128 DIM V(24)

TI_ FOR I=! TO 24

_14_V(1)=ABB((H(I,I)-H(I_3))/H(I,I)

_16_NEXT I

3171 DI_ T(24,2)

,._@ FOR r-, TO 2

3198 FOR J:l TO 24

32_ T(J,I)=H(J,I+3)/H(J,_)+I(B

12Bl T(J,I)=ABS(T(J,I))

321) NEXT J

_22_ NEXT I

32_ REM PRINT OUT DATA

324_ RE_

_25_ N=32

326_PAGE

3278GOSU83388

328_ PRINT 'PRINTEDCOPY?YES =I NO =2 '

ORIGINAl] PAGE IS

OF POOR QUALITY.
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3290 INPUTZ5

330@ IF Z5=I THEN 334e

331@ IF.Z5=2 THEN 4010

3320 PRINT 'BADCHOICE•

3330 GO TO

33_0 PRINT

3350 INPUT

33_0 GOSUB

3370 GO TO

5380 PRINT

3390 PRINT

3400 PRINT

3410 PRINT

342@PRINT

3430 PRINT

3440 PRINT

3450 PRINT

3460 PRINT

3470 PRINT
v 7_A,, PRINT

3472 PRINT

3480 PRINT

3490 PRINT

3500.PRINT

3510 PRINT

3520 PRINT

_530 PRINT

3540 PRINT

3550 PRINT

3560 PRINT

3570 PRINT

3580 PRINT

3590 PRINT

36@0PRINT

36i0PRINT

3620 PRINT

3630PRINT

3640 PRINT

365@PRINT

3360 PRINT

3670 PRINT

3680 PRINT

36Q0 PRINT

37_0PRINT

3710 PRINT

3720PRINT

3730PRINT

374@ PRINT

3750PRINT

376@PRINT

3770 PRINT

3780 PRINT

3280

'INPUTPRINTERl'

N

3380

4010

@N:'NONLINEARDATA ANALYSISFOR ORTHOTROPiCMODEL

_N:_ .
_N:• INPUTDATA"

_N:' •

_N:"LINEARELASTICMODUL!'

_N:' '

_N:'CII= ";K{I);"(_Pa)

_N:'C22= ';K(2);'(GPa)

• "" K(3};" (SPa)N: C_o = "; .

_N:_C44= ';k(4);"(_Pa)

@N:'C55 ";K(5);•(GPa)

@N:•C66= _;K(6);•(GPa)

QN:• .
_N:'VELOCITY

@N:• ,

QN:•t• H122 =

QN:'2. H211 =

@N:"3. H322 =

@N:'4. H3!! =

_N:"5. HI21 =

@N:•6. H212 =

_N:•7. H312 =

_N:"8. H321 =

@N:"9. H123 =

_N:'IO.H213 =

@N:'II.H323 =

e..•,_ H313 :

_N:'I3.HI31

• H&V_

@N:'IS.H132

@N:•I6.H231

@N:'I7.HO[! =

_N:'I8.H022 =

@N:'I9.H012 =

_N:_20.H021 =

_N:'21.H013 =

_N:_22.H023 =

_N:"23.H031 =

9N:'24.H032 =

_N:" "

_N:'THIRDORDER

QN:'SQUARESFIT

@N:• ,

511 = ";5(i);'(SPa)_d'

522 = ';S(2);'(GPa)_-I•

533 = " c " •;_(._; (@Pa)"-l'

523 = ';5(4);• (GPa)"-l'

513 = ";5(5);"(GPa)_-I'

512 = ';5(6);'(GPa)"-['

DERIVATIVED_TA (GPa)_-I"

';H(I,!);"+/- ";H(t,2)

,H,_,,,; _H

';H(_I);' +/- ";H(3,21

•;H(4,1);"+i- ";H(4,2)

' ",_(5,2)';H(5,1); +1- '"

_H,_.,';H(6,i);• +!- ,. ,,_

';H(7,1);'+/- ";H(7,2)

•;H(8,1);..+/-..._n,.,_,_)

•;H(g,I);'+/- ";H(g,2)

";H(i0,1);"_/- ";H(!0,2)

';H(II,I_;"+_-__'u_'_,2),-,_.

•;_(_,I);_..... +,'-,";H(!2,_,

!_;"_!- ";H(13,2i= ";H(i3,,, .

= ';H(!4,1");"+/- ';H(14,_

= ";H(!5,t);"+i- ",,,,_,_,W_'__

= ';H(16,1):",_-,,_"', _

;H(_,';H(17,1);_ +/- ,,. _._,_

" '_'" . "_18,2)";H_,8,,,, +/- ";_,
....... +I- ";H(Ig,2);H(I_,_),

°;H(20,[);_ +/- ';H(20,2)

';H(21,[); +!- ';H,..,_)

';H _ _' _ ' "(_,._; +/- _;H_.2._,2)

';H(24_1);• +/- ";H(24,2}

P _T TqELASTIC_ON_N., DERIVEDF_:OMLEAST'

AND MAX. ERRORAND PROB.ERROR (SPa)'



3790PRINT
38HPRINT
_8L6PRINI
3820PRINT

3838 PRINT

3846 PRINT

3859 PRINT

3851PRINT

3852 PRINT

3853PRINT

3854PRINT

3855PRINT

3856PRINT

3857 PRINT

3858PRINT

5869 PRINT

_876PRINT

_880 PRINT

3896 PRINT
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@N:•C111= •;C(!,!);

@N:'C112= ';C(2,!);

@N:•CI13= •;C(3,1);
,rip _o_N...i,,: ';C(4,1);

@N:'C222= •;C(5,1);

@N:'r_7_,,_: '.;C(6,1);

_N:'C144= ';C(7,1);

_N:"C244= ";C(8,1);

_N:'C344= ";C(9,I);

_N:"CI55: ';C(IO,I)

@N:'C255= ';C(II,D

_N:'C355= "'_:'_

@N:'C166

_N:"C266

, +/-

, +/-

, +/-

• +/-

, +/-

, +/.

, +/.

, +/-

";C{I,2);• +/- ';C(I,3}

';C(2,2};'+/- ';C(2,3)

';C(3,2);'+I- ";C(3,3}

,C(4,.,, +/- ';C(4,3)

';C(5,2);'+/- ';C<5,_)

";C(6,2);'+/- ";C(6,3)

";C(7,2);' +/- ';C(7,3}

';C(8,2};'+/- ";C(8,3)

' +I- ";C(9,2);'+I- ";C(9,3}

;• ÷/....;C(I0,2);• +/-";C(I@,3)

;' +I- ';C(11,2);'+/- ';C(II,3)

;' +/- ';C(12,2);• +/- ';C(12,_)

: ';C(13,I);'+/- ';C(13,2);'+/- ";C(13,3)

= ";C(14,1);'+/- ';C(14,2);"+I- •;C(14,3)

@N:'C366= ";C(15,1);'+/- ";C(15,2);'+/- ";C(15,3)

(N:'C133,C233,C13l,C121,C456UNDETERMINE)'
_N:' "

@N:'RECALCULATEDVELOCITYDERIVATIVESUSINGFITTEDTOEC'S•

_N:'ANDMAX. AND PROB.ERRORSIN 5AME ORDERAS BEFORE•

ORIGINAL PACE T3

OF. POOR QUALITY

396QPRINT@N:' "

3916 FOR !:l TO 24

lq2@ PRINT@N:I;".';H(I,3);'+/- ';H(I,4);'+/- •;H(I,5)

3936 NEXT I

3946 PRINT@N:' "

3956 PRINT @N:'PERCENTDIFFERENCES,MAX. AND PROB. UNCERTAINTIES"

3966 PRINT_N:' "

3976FOR I=l T0"24
_t • T I t_986 PRINT_N:I; . ;V(1);.,I,,I;T(I,2)

3996NEXT I

3991 PRINT@N:' "

3992 PRINT_N:'CONDITION# FOR INVERTINGMATRIXIS: ';Z3

4666 RETURN

4616 END
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